Cargando…
Aluminum Perlite Syntactic Foams
This paper presents the usage of spark plasma sintering (SPS) as a method to obtain aluminum-expanded perlite syntactic foams with high porosity. In the test samples, fine aluminum powder with flaky shape particles was used as matrix material and natural, inorganic, granular, expanded perlite was us...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370033/ https://www.ncbi.nlm.nih.gov/pubmed/35955381 http://dx.doi.org/10.3390/ma15155446 |
Sumario: | This paper presents the usage of spark plasma sintering (SPS) as a method to obtain aluminum-expanded perlite syntactic foams with high porosity. In the test samples, fine aluminum powder with flaky shape particles was used as matrix material and natural, inorganic, granular, expanded perlite was used as a space holder to ensure high porosity (35–57%) and uniform structure. SPS was used to consolidate the specimens. The structures were characterized by scanning electron microscopy and compression tests. Energy absorption (W~7.49 MJ/m(3)) and energy absorption efficiency (EW < 90%) were also determined. |
---|