Cargando…

Transcriptional Comparison of New Hybrid Progenies and Clone-Cultivars of Tea (Camellia sinensis L.) Associated to Catechins Content

Heterosis or hybrid vigor is the improved performance of a desirable quality in hybrid progeny. Hybridization between high-productive Assam type and high-quality Chinese type clone-cultivar is expected to develop elite tea plant progenies with high quality and productivity. Comparative transcriptomi...

Descripción completa

Detalles Bibliográficos
Autores principales: Widhianata, Hani, Basunanda, Panjisakti, Supriyadi, Supriyadi, Taryono, Taryono
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370121/
https://www.ncbi.nlm.nih.gov/pubmed/35956452
http://dx.doi.org/10.3390/plants11151972
Descripción
Sumario:Heterosis or hybrid vigor is the improved performance of a desirable quality in hybrid progeny. Hybridization between high-productive Assam type and high-quality Chinese type clone-cultivar is expected to develop elite tea plant progenies with high quality and productivity. Comparative transcriptomics analyses of leaves from the F1 hybrids and their parental clone-cultivars were conducted to explore molecular mechanisms related to catechin content using a high-throughput next-generation RNA-seq strategy and high-performance liquid chromatography (HPLC). The content of EGCG (epigallocatechin gallate) and C (catechin) was higher in ‘Kiara-8’ × ‘Sukoi’, ‘Tambi-2’ × ‘Suka Ati’, and ‘Tambi-2’ × ‘TRI-2025’ than the other hybrid and clone-cultivars. KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) analysis found that most pathways associated with catechins content were enriched. Significant differentially expressed genes (DEGs) mainly associated with phenylpropanoid, flavonoid, drug metabolism-cytochrome P450, and transcription factor (MYB, bHLH, LOB, and C2H2) pathways appeared to be responsible for the high accumulation of secondary metabolites in ‘Kiara-8’ × ‘Sukoi’, ‘Tambi-2’ × ‘Suka Ati’, and ‘Tambi-2’ × ‘TRI-2025’ as were detected in EGCG and catechin content. Several structural genes related to the above pathways have been obtained, which will be used as candidate genes in the screening of breeding materials.