Cargando…
Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells
Glioblastoma (GBM) is one of the most aggressive and lethal malignancy of the central nervous system. Temozolomide is the standard of care for gliomas, frequently results in resistance to drug and tumor recurrence. Therefore, further research is required for the development of effective drugs in ord...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370145/ https://www.ncbi.nlm.nih.gov/pubmed/35956937 http://dx.doi.org/10.3390/molecules27154988 |
_version_ | 1784766699998806016 |
---|---|
author | Chernov, Alexandr N. Filatenkova, Tatiana A. Glushakov, Ruslan I. Buntovskaya, Alexandra S. Alaverdian, Diana A. Tsapieva, Anna N. Kim, Alexandr V. Fedorov, Evgeniy V. Skliar, Sofia S. Matsko, Marina V. Galimova, Elvira S. Shamova, Olga V. |
author_facet | Chernov, Alexandr N. Filatenkova, Tatiana A. Glushakov, Ruslan I. Buntovskaya, Alexandra S. Alaverdian, Diana A. Tsapieva, Anna N. Kim, Alexandr V. Fedorov, Evgeniy V. Skliar, Sofia S. Matsko, Marina V. Galimova, Elvira S. Shamova, Olga V. |
author_sort | Chernov, Alexandr N. |
collection | PubMed |
description | Glioblastoma (GBM) is one of the most aggressive and lethal malignancy of the central nervous system. Temozolomide is the standard of care for gliomas, frequently results in resistance to drug and tumor recurrence. Therefore, further research is required for the development of effective drugs in order to guarantee specific treatments to succeed. The aim of current study was to investigate the effects of nerve growth factor (NGF), human cathelicidin (LL-37), protegrin-1 (PG-1), and temozolomide on bioenergetic function of mitochondria, clonogenicity, and migration of human U251 glioma cells. Colony formation assay was used to test the ability of the glioma cells to form colonies in vitro. The U251 glioma cells migration was evaluated using wound-healing assay. To study the mitochondrial metabolism in glioma cells we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) using a Seahorse XF cell Mito stress test kit and Seahorse XF cell Glycolysis stress kit, respectively. We revealed that LL-37, NGF, and TMZ show strong anti-tumorigenic activity on GMB. LL-37 (4 μM), TMZ (155 μM), and NGF (7.55 × 10(−3) μM) inhibited 43.9%–60.3%, 73.5%–81.3%, 66.2% the clonogenicity of glioma U251 cells for 1–2 days, respectively. LL-37 (4 μM), and NGF (7.55 × 10(−3) μM) inhibited the migration of U251 glioma cells on the third and fourth days. TMZ also inhibited the migration of human glioma U251 cells over 1–3 days. In contrast, PG-1 (16 μM) stimulated the migration of U251 glioma cells on the second, fourth, and sixth days. Anti-mitogenic and anti-migration activities of NGF, LL-37, and TMZ maybe are relation to their capacity to reduce the basal OCR, ATP-synthetase, and maximal respiration of mitochondria in human glioma U251 cells. Glycolysis, glycolytic capacity and glycolytic spare in glioma U251 cells haven`t been changed under the effect of NGF, LL-37, PG-1, and TMZ in regard to control level. Thus, LL-37 and NGF inhibit migration and clonogenicity of U251 glioma cells, which may indicate that these compounds have anti-mitogenic and anti-migration effects on human glioma cells. The study of the mechanisms of these effects may contribute in the future to the use of NGF and LL-37 as therapeutic agents for gliomas. |
format | Online Article Text |
id | pubmed-9370145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93701452022-08-12 Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells Chernov, Alexandr N. Filatenkova, Tatiana A. Glushakov, Ruslan I. Buntovskaya, Alexandra S. Alaverdian, Diana A. Tsapieva, Anna N. Kim, Alexandr V. Fedorov, Evgeniy V. Skliar, Sofia S. Matsko, Marina V. Galimova, Elvira S. Shamova, Olga V. Molecules Article Glioblastoma (GBM) is one of the most aggressive and lethal malignancy of the central nervous system. Temozolomide is the standard of care for gliomas, frequently results in resistance to drug and tumor recurrence. Therefore, further research is required for the development of effective drugs in order to guarantee specific treatments to succeed. The aim of current study was to investigate the effects of nerve growth factor (NGF), human cathelicidin (LL-37), protegrin-1 (PG-1), and temozolomide on bioenergetic function of mitochondria, clonogenicity, and migration of human U251 glioma cells. Colony formation assay was used to test the ability of the glioma cells to form colonies in vitro. The U251 glioma cells migration was evaluated using wound-healing assay. To study the mitochondrial metabolism in glioma cells we measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) using a Seahorse XF cell Mito stress test kit and Seahorse XF cell Glycolysis stress kit, respectively. We revealed that LL-37, NGF, and TMZ show strong anti-tumorigenic activity on GMB. LL-37 (4 μM), TMZ (155 μM), and NGF (7.55 × 10(−3) μM) inhibited 43.9%–60.3%, 73.5%–81.3%, 66.2% the clonogenicity of glioma U251 cells for 1–2 days, respectively. LL-37 (4 μM), and NGF (7.55 × 10(−3) μM) inhibited the migration of U251 glioma cells on the third and fourth days. TMZ also inhibited the migration of human glioma U251 cells over 1–3 days. In contrast, PG-1 (16 μM) stimulated the migration of U251 glioma cells on the second, fourth, and sixth days. Anti-mitogenic and anti-migration activities of NGF, LL-37, and TMZ maybe are relation to their capacity to reduce the basal OCR, ATP-synthetase, and maximal respiration of mitochondria in human glioma U251 cells. Glycolysis, glycolytic capacity and glycolytic spare in glioma U251 cells haven`t been changed under the effect of NGF, LL-37, PG-1, and TMZ in regard to control level. Thus, LL-37 and NGF inhibit migration and clonogenicity of U251 glioma cells, which may indicate that these compounds have anti-mitogenic and anti-migration effects on human glioma cells. The study of the mechanisms of these effects may contribute in the future to the use of NGF and LL-37 as therapeutic agents for gliomas. MDPI 2022-08-05 /pmc/articles/PMC9370145/ /pubmed/35956937 http://dx.doi.org/10.3390/molecules27154988 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chernov, Alexandr N. Filatenkova, Tatiana A. Glushakov, Ruslan I. Buntovskaya, Alexandra S. Alaverdian, Diana A. Tsapieva, Anna N. Kim, Alexandr V. Fedorov, Evgeniy V. Skliar, Sofia S. Matsko, Marina V. Galimova, Elvira S. Shamova, Olga V. Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells |
title | Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells |
title_full | Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells |
title_fullStr | Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells |
title_full_unstemmed | Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells |
title_short | Anticancer Effect of Cathelicidin LL-37, Protegrin PG-1, Nerve Growth Factor NGF, and Temozolomide: Impact on the Mitochondrial Metabolism, Clonogenic Potential, and Migration of Human U251 Glioma Cells |
title_sort | anticancer effect of cathelicidin ll-37, protegrin pg-1, nerve growth factor ngf, and temozolomide: impact on the mitochondrial metabolism, clonogenic potential, and migration of human u251 glioma cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370145/ https://www.ncbi.nlm.nih.gov/pubmed/35956937 http://dx.doi.org/10.3390/molecules27154988 |
work_keys_str_mv | AT chernovalexandrn anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT filatenkovatatianaa anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT glushakovruslani anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT buntovskayaalexandras anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT alaverdiandianaa anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT tsapievaannan anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT kimalexandrv anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT fedorovevgeniyv anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT skliarsofias anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT matskomarinav anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT galimovaelviras anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells AT shamovaolgav anticancereffectofcathelicidinll37protegrinpg1nervegrowthfactorngfandtemozolomideimpactonthemitochondrialmetabolismclonogenicpotentialandmigrationofhumanu251gliomacells |