Cargando…

Molecular Breeding to Overcome Biotic Stresses in Soybean: Update

Soybean (Glycine max (L.) Merr.) is an important leguminous crop and biotic stresses are a global concern for soybean growers. In recent decades, significant development has been carried outtowards identification of the diseases caused by pathogens, sources of resistance and determination of loci co...

Descripción completa

Detalles Bibliográficos
Autores principales: Tripathi, Niraj, Tripathi, Manoj Kumar, Tiwari, Sushma, Payasi, Devendra K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370206/
https://www.ncbi.nlm.nih.gov/pubmed/35956444
http://dx.doi.org/10.3390/plants11151967
Descripción
Sumario:Soybean (Glycine max (L.) Merr.) is an important leguminous crop and biotic stresses are a global concern for soybean growers. In recent decades, significant development has been carried outtowards identification of the diseases caused by pathogens, sources of resistance and determination of loci conferring resistance to different diseases on linkage maps of soybean. Host-plant resistance is generally accepted as the bestsolution because of its role in the management of environmental and economic conditions of farmers owing to low input in terms of chemicals. The main objectives of soybean crop improvement are based on the identification of sources of resistance or tolerance against various biotic as well as abiotic stresses and utilization of these sources for further hybridization and transgenic processes for development of new cultivars for stress management. The focus of the present review is to summarize genetic aspects of various diseases caused by pathogens in soybean and molecular breeding research work conducted to date.