Cargando…
Evaluation and Design of Colored Silicon Nanoparticle Systems Using a Bidirectional Deep Neural Network
Silicon nanoparticles (SiNPs) with lowest-order Mie resonance produce non-iridescent and non-fading vivid structural colors in the visible range. However, the strong wavelength dependence of the radiation pattern and dielectric function makes it very difficult to design nanoparticle systems with the...
Autores principales: | Zhou, Yan, Hu, Lechuan, Wang, Chengchao, Ma, Lanxin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370442/ https://www.ncbi.nlm.nih.gov/pubmed/35957145 http://dx.doi.org/10.3390/nano12152715 |
Ejemplares similares
-
Prediction and Inverse Design of Structural Colors of Nanoparticle Systems via Deep Neural Network
por: Ma, Lanxin, et al.
Publicado: (2021) -
Scene Text Recognition Based on Bidirectional LSTM and Deep Neural Network
por: Kantipudi, MVV Prasad, et al.
Publicado: (2021) -
Deep residual-dense network based on bidirectional recurrent neural network for atrial fibrillation detection
por: Laghari, Asif Ali, et al.
Publicado: (2023) -
Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network
por: Zhang, Buzhong, et al.
Publicado: (2018) -
Identifying protein subcellular localisation in scientific literature using bidirectional deep recurrent neural network
por: David, Rakesh, et al.
Publicado: (2021)