Cargando…
Efficient Removal of Siloxane from Biogas by Using β-Cyclodextrin-Modified Reduced Graphene Oxide Aerogels
In this study, β-cyclodextrin-modified reduced graphene oxide aerogels (β-CD-rGOAs) were synthesized via a one-step hydrothermal method and were used to remove hexamethyldisiloxane (L2) from biogas. The β-CD-rGOAs were characterized by the Brunner–Emmet–Teller technique, using Fourier-transform infr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370590/ https://www.ncbi.nlm.nih.gov/pubmed/35957075 http://dx.doi.org/10.3390/nano12152643 |
Sumario: | In this study, β-cyclodextrin-modified reduced graphene oxide aerogels (β-CD-rGOAs) were synthesized via a one-step hydrothermal method and were used to remove hexamethyldisiloxane (L2) from biogas. The β-CD-rGOAs were characterized by the Brunner–Emmet–Teller technique, using Fourier-transform infrared spectroscopy, Raman spectrometry, scanning electron microscopy (SEM), contact angle measurements, and X-ray diffraction. The results of the characterizations indicate that β-CD was grafted onto the surface of rGOAs as a cross-linking modifier. The β-CD-rGOA had a three-dimensional, cross-linked porous structure. The maximum breakthrough adsorption capacity of L2 on β-CD-rGOA at 273 K was 111.8 mg g(−1). A low inlet concentration and bed temperature facilitated the adsorption of L2. Moreover, the β-CD-rGOA was regenerated by annealing at 80 °C, which renders this a promising material for removing L2 from biogas. |
---|