Cargando…

Efficient Removal of Siloxane from Biogas by Using β-Cyclodextrin-Modified Reduced Graphene Oxide Aerogels

In this study, β-cyclodextrin-modified reduced graphene oxide aerogels (β-CD-rGOAs) were synthesized via a one-step hydrothermal method and were used to remove hexamethyldisiloxane (L2) from biogas. The β-CD-rGOAs were characterized by the Brunner–Emmet–Teller technique, using Fourier-transform infr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Yanhui, Hou, Xifeng, Lv, Siqi, Ma, Zichuan, Ma, Xiaolong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370590/
https://www.ncbi.nlm.nih.gov/pubmed/35957075
http://dx.doi.org/10.3390/nano12152643
Descripción
Sumario:In this study, β-cyclodextrin-modified reduced graphene oxide aerogels (β-CD-rGOAs) were synthesized via a one-step hydrothermal method and were used to remove hexamethyldisiloxane (L2) from biogas. The β-CD-rGOAs were characterized by the Brunner–Emmet–Teller technique, using Fourier-transform infrared spectroscopy, Raman spectrometry, scanning electron microscopy (SEM), contact angle measurements, and X-ray diffraction. The results of the characterizations indicate that β-CD was grafted onto the surface of rGOAs as a cross-linking modifier. The β-CD-rGOA had a three-dimensional, cross-linked porous structure. The maximum breakthrough adsorption capacity of L2 on β-CD-rGOA at 273 K was 111.8 mg g(−1). A low inlet concentration and bed temperature facilitated the adsorption of L2. Moreover, the β-CD-rGOA was regenerated by annealing at 80 °C, which renders this a promising material for removing L2 from biogas.