Cargando…

Antioxidant and Anticancer Potential of Bioactive Compounds from Rhinacanthus nasutus Cell Suspension Culture

The potential benefits of natural plant extracts have received attention in recent years, encouraging the development of natural products that effectively treat various diseases. This is the first report on establishing callus and cell suspension cultures of Rhinacanthus nasutus (L.) Kurz. A yellow...

Descripción completa

Detalles Bibliográficos
Autores principales: Songserm, Pattralak, Klanrit, Poramaporn, Klanrit, Poramate, Phetcharaburanin, Jutarop, Thanonkeo, Pornthap, Apiraksakorn, Jirawan, Phomphrai, Khamphee, Klanrit, Preekamol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370634/
https://www.ncbi.nlm.nih.gov/pubmed/35956472
http://dx.doi.org/10.3390/plants11151994
Descripción
Sumario:The potential benefits of natural plant extracts have received attention in recent years, encouraging the development of natural products that effectively treat various diseases. This is the first report on establishing callus and cell suspension cultures of Rhinacanthus nasutus (L.) Kurz. A yellow friable callus was successfully induced from in vitro leaf explants on Murashige and Skoog medium supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 1 mg/L 1-naphthalene acetic acid. A selected friable callus line was used to establish the cell suspension culture with the same medium. The antioxidant assays showed that the leaf- and ethanolic-suspension-cultured cell (SCC) extracts exhibited high antioxidant potential. In addition, the in vitro cytotoxicity revealed by the MTT assay demonstrated potent antiproliferative effects against the oral cancer cell lines ORL-48 and ORL-136 in a dose-dependent manner. Several groups of compounds, including terpenoids, phenolics, flavonoids, quinones, and stilbenes, were identified by UHPLC–QToF–MS, with the same compounds detected in leaf and SCC extracts, including austroinulin, lucidenic acid, esculetin, embelin, and quercetin 3-(2″-p-hydroxybenzoyl-4″-p-coumarylrhamnoside). The present study suggests the value of further investigations for phytochemical production using R. nasutus cell suspension culture.