Cargando…

In Situ Fluorescent Illumination of Microplastics in Water Utilizing a Combination of Dye/Surfactant and Quenching Techniques

Although plastics have benefited our lives in terms of cost and convenience, the disposal of end-of-life plastics poses environmental problems, such as microplastics (MPs). Although the separation (e.g., filtration) and staining of MPs with fluorescent dye/solvent are generally accepted steps to obs...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Doo Hong, Oh, Se Bin, Hong, Sung Chul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370827/
https://www.ncbi.nlm.nih.gov/pubmed/35956597
http://dx.doi.org/10.3390/polym14153084
_version_ 1784766934463545344
author Park, Doo Hong
Oh, Se Bin
Hong, Sung Chul
author_facet Park, Doo Hong
Oh, Se Bin
Hong, Sung Chul
author_sort Park, Doo Hong
collection PubMed
description Although plastics have benefited our lives in terms of cost and convenience, the disposal of end-of-life plastics poses environmental problems, such as microplastics (MPs). Although the separation (e.g., filtration) and staining of MPs with fluorescent dye/solvent are generally accepted steps to observe MPs in an environmental matrix, in this study, an in situ selective fluorescent illumination of the MPs in water was attempted with the aid of surfactant. Nonpolar fluorescent dye in combination with surfactant affords nanometer-sized dye particles in water, which adsorb on MPs and penetrate the polymer matrix for effective staining and stable fluorescent behaviors. The effects of different staining parameters, including different dyes, surfactants, staining temperatures, staining times, dye/surfactant ratios, dye/MP ratios, and MP concentrations in aqueous solutions were investigated to better understand staining conditions. More interestingly, non-adsorbed free dye molecules in the staining solution were almost completely fluorescence-quenched by introducing the quenching agent, aniline, while the fluorescence intensity of the stained MP was maintained. By staining MPs with a dye/surfactant combination and subsequently quenching with aniline, in situ selective fluorescent illumination of the MPs in water was successfully achieved, which may eliminate the tedious separation/filtration procedure of MPs to accomplish the quick detection or monitoring of MPs.
format Online
Article
Text
id pubmed-9370827
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93708272022-08-12 In Situ Fluorescent Illumination of Microplastics in Water Utilizing a Combination of Dye/Surfactant and Quenching Techniques Park, Doo Hong Oh, Se Bin Hong, Sung Chul Polymers (Basel) Article Although plastics have benefited our lives in terms of cost and convenience, the disposal of end-of-life plastics poses environmental problems, such as microplastics (MPs). Although the separation (e.g., filtration) and staining of MPs with fluorescent dye/solvent are generally accepted steps to observe MPs in an environmental matrix, in this study, an in situ selective fluorescent illumination of the MPs in water was attempted with the aid of surfactant. Nonpolar fluorescent dye in combination with surfactant affords nanometer-sized dye particles in water, which adsorb on MPs and penetrate the polymer matrix for effective staining and stable fluorescent behaviors. The effects of different staining parameters, including different dyes, surfactants, staining temperatures, staining times, dye/surfactant ratios, dye/MP ratios, and MP concentrations in aqueous solutions were investigated to better understand staining conditions. More interestingly, non-adsorbed free dye molecules in the staining solution were almost completely fluorescence-quenched by introducing the quenching agent, aniline, while the fluorescence intensity of the stained MP was maintained. By staining MPs with a dye/surfactant combination and subsequently quenching with aniline, in situ selective fluorescent illumination of the MPs in water was successfully achieved, which may eliminate the tedious separation/filtration procedure of MPs to accomplish the quick detection or monitoring of MPs. MDPI 2022-07-29 /pmc/articles/PMC9370827/ /pubmed/35956597 http://dx.doi.org/10.3390/polym14153084 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Park, Doo Hong
Oh, Se Bin
Hong, Sung Chul
In Situ Fluorescent Illumination of Microplastics in Water Utilizing a Combination of Dye/Surfactant and Quenching Techniques
title In Situ Fluorescent Illumination of Microplastics in Water Utilizing a Combination of Dye/Surfactant and Quenching Techniques
title_full In Situ Fluorescent Illumination of Microplastics in Water Utilizing a Combination of Dye/Surfactant and Quenching Techniques
title_fullStr In Situ Fluorescent Illumination of Microplastics in Water Utilizing a Combination of Dye/Surfactant and Quenching Techniques
title_full_unstemmed In Situ Fluorescent Illumination of Microplastics in Water Utilizing a Combination of Dye/Surfactant and Quenching Techniques
title_short In Situ Fluorescent Illumination of Microplastics in Water Utilizing a Combination of Dye/Surfactant and Quenching Techniques
title_sort in situ fluorescent illumination of microplastics in water utilizing a combination of dye/surfactant and quenching techniques
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370827/
https://www.ncbi.nlm.nih.gov/pubmed/35956597
http://dx.doi.org/10.3390/polym14153084
work_keys_str_mv AT parkdoohong insitufluorescentilluminationofmicroplasticsinwaterutilizingacombinationofdyesurfactantandquenchingtechniques
AT ohsebin insitufluorescentilluminationofmicroplasticsinwaterutilizingacombinationofdyesurfactantandquenchingtechniques
AT hongsungchul insitufluorescentilluminationofmicroplasticsinwaterutilizingacombinationofdyesurfactantandquenchingtechniques