Cargando…
Single Camera Face Position-Invariant Driver’s Gaze Zone Classifier Based on Frame-Sequence Recognition Using 3D Convolutional Neural Networks
Estimating the driver’s gaze in a natural real-world setting can be problematic for different challenging scenario conditions. For example, faces will undergo facial occlusions, illumination, or various face positions while driving. In this effort, we aim to reduce misclassifications in driving situ...
Autores principales: | Lollett, Catherine, Kamezaki, Mitsuhiro, Sugano, Shigeki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370862/ https://www.ncbi.nlm.nih.gov/pubmed/35957412 http://dx.doi.org/10.3390/s22155857 |
Ejemplares similares
-
Continuous Driver’s Gaze Zone Estimation Using RGB-D Camera
por: Wang, Yafei, et al.
Publicado: (2019) -
Driver’s Head Pose and Gaze Zone Estimation Based on Multi-Zone Templates Registration and Multi-Frame Point Cloud Fusion
por: Wang, Yafei, et al.
Publicado: (2022) -
Gaze Gesture Recognition by Graph Convolutional Networks
por: Shi, Lei, et al.
Publicado: (2021) -
Dual-Cameras-Based Driver’s Eye Gaze Tracking System with Non-Linear Gaze Point Refinement
por: Wang, Yafei, et al.
Publicado: (2022) -
Animal Scanner: Software for classifying humans, animals, and empty frames in camera trap images
por: Yousif, Hayder, et al.
Publicado: (2019)