Cargando…

Threshold Segmentation and Length Measurement Algorithms for Irregular Curves in Complex Backgrounds

It is an urgent problem to know how to quickly and accurately measure the length of irregular curves in complex background images. To solve the problem, we first proposed a quasi-bimodal threshold segmentation (QBTS) algorithm, which transforms the multimodal histogram into a quasi-bimodal histogram...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruan, Xusheng, Deng, Honggui, Xu, Qiguo, Liu, Yang, He, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370878/
https://www.ncbi.nlm.nih.gov/pubmed/35957318
http://dx.doi.org/10.3390/s22155761
Descripción
Sumario:It is an urgent problem to know how to quickly and accurately measure the length of irregular curves in complex background images. To solve the problem, we first proposed a quasi-bimodal threshold segmentation (QBTS) algorithm, which transforms the multimodal histogram into a quasi-bimodal histogram to achieve a faster and more accurate segmentation of the target curve. Then, we proposed a single-pixel skeleton length measurement (SPSLM) algorithm based on the 8-neighborhood model, which used the 8-neighborhood feature to measure the length for the first time, and achieved a more accurate measurement of the curve length. Finally, the two algorithms were tested and analyzed in terms of accuracy and speed on the two original datasets of this paper. The experimental results show that the algorithms proposed in this paper can quickly and accurately segment the target curve from the neon design rendering with complex background interference and measure its length.