Cargando…
A Convolutional Neural-Network-Based Training Model to Estimate Actual Distance of Persons in Continuous Images
Distance and depth detection plays a crucial role in intelligent robotics. It enables drones to understand their working environment to avoid collisions and accidents immediately and is very important in various AI applications. Image-based distance detection usually relies on the correctness of geo...
Autores principales: | Tsai, Yu-Shiuan, Modales, Alvin V., Lin, Hung-Ta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370882/ https://www.ncbi.nlm.nih.gov/pubmed/35957300 http://dx.doi.org/10.3390/s22155743 |
Ejemplares similares
-
Continuous estimation of power system inertia using convolutional neural networks
por: Linaro, Daniele, et al.
Publicado: (2023) -
A convolutional neural network for estimating synaptic connectivity from spike trains
por: Endo, Daisuke, et al.
Publicado: (2021) -
Distance Field-Based Convolutional Neural Network for Edge Detection
por: Hu, Dadan, et al.
Publicado: (2022) -
DISTEMA: distance map-based estimation of single protein model accuracy with attentive 2D convolutional neural network
por: Chen, Xiao, et al.
Publicado: (2022) -
Tomato Fruit Detection Using Modified Yolov5m Model with Convolutional Neural Networks
por: Tsai, Fa-Ta, et al.
Publicado: (2023)