Cargando…
Temperature Prediction of Seasonal Frozen Subgrades Based on CEEMDAN-LSTM Hybrid Model
Improving the temperature prediction accuracy for subgrades in seasonally frozen regions will greatly help improve the understanding of subgrades’ thermal states. Due to the nonlinearity and non-stationarity of the temperature time series of subgrades, it is difficult for a single general neural net...
Autores principales: | Chen, Liyue, Liu, Xiao, Zeng, Chao, He, Xianzhi, Chen, Fengguang, Zhu, Baoshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370898/ https://www.ncbi.nlm.nih.gov/pubmed/35957299 http://dx.doi.org/10.3390/s22155742 |
Ejemplares similares
-
A Freezing-Thawing Damage Characterization Method for Highway Subgrade in Seasonally Frozen Regions Based on Thermal-Hydraulic-Mechanical Coupling Model
por: Deng, Qingsong, et al.
Publicado: (2021) -
Gas Concentration Prediction Based on IWOA-LSTM-CEEMDAN Residual Correction Model
por: Xu, Ningke, et al.
Publicado: (2022) -
Prediction of sea ice area based on the CEEMDAN-SO-BiLSTM model
por: Guo, Qiao, et al.
Publicado: (2023) -
PM2.5 concentration prediction using weighted CEEMDAN and improved LSTM neural network
por: Zhang, Li, et al.
Publicado: (2023) -
Experimental Study on Consolidation-Creep Behavior of Subgrade Modified Soil in Seasonally Frozen Areas
por: Wang, Fuyu, et al.
Publicado: (2021)