Cargando…
Multidimensional Latent Semantic Networks for Text Humor Recognition
Humor is a special human expression style, an important “lubricant” for daily communication for people; people can convey emotional messages that are not easily expressed through humor. At present, artificial intelligence is one of the popular research domains; “discourse understanding” is also an i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370911/ https://www.ncbi.nlm.nih.gov/pubmed/35898012 http://dx.doi.org/10.3390/s22155509 |
_version_ | 1784766962175311872 |
---|---|
author | Xiong, Siqi Wang, Rongbo Huang, Xiaoxi Chen, Zhiqun |
author_facet | Xiong, Siqi Wang, Rongbo Huang, Xiaoxi Chen, Zhiqun |
author_sort | Xiong, Siqi |
collection | PubMed |
description | Humor is a special human expression style, an important “lubricant” for daily communication for people; people can convey emotional messages that are not easily expressed through humor. At present, artificial intelligence is one of the popular research domains; “discourse understanding” is also an important research direction, and how to make computers recognize and understand humorous expressions similar to humans has become one of the popular research domains for natural language processing researchers. In this paper, a humor recognition model (MLSN) based on current humor theory and popular deep learning techniques is proposed for the humor recognition task. The model automatically identifies whether a sentence contains humor expression by capturing the inconsistency, phonetic features, and ambiguity of a joke as semantic features. The model was experimented on three publicly available wisecrack datasets and compared with state-of-the-art language models, and the results demonstrate that the proposed model has better humor recognition accuracy and can contribute to the research on discourse understanding. |
format | Online Article Text |
id | pubmed-9370911 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93709112022-08-12 Multidimensional Latent Semantic Networks for Text Humor Recognition Xiong, Siqi Wang, Rongbo Huang, Xiaoxi Chen, Zhiqun Sensors (Basel) Article Humor is a special human expression style, an important “lubricant” for daily communication for people; people can convey emotional messages that are not easily expressed through humor. At present, artificial intelligence is one of the popular research domains; “discourse understanding” is also an important research direction, and how to make computers recognize and understand humorous expressions similar to humans has become one of the popular research domains for natural language processing researchers. In this paper, a humor recognition model (MLSN) based on current humor theory and popular deep learning techniques is proposed for the humor recognition task. The model automatically identifies whether a sentence contains humor expression by capturing the inconsistency, phonetic features, and ambiguity of a joke as semantic features. The model was experimented on three publicly available wisecrack datasets and compared with state-of-the-art language models, and the results demonstrate that the proposed model has better humor recognition accuracy and can contribute to the research on discourse understanding. MDPI 2022-07-23 /pmc/articles/PMC9370911/ /pubmed/35898012 http://dx.doi.org/10.3390/s22155509 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xiong, Siqi Wang, Rongbo Huang, Xiaoxi Chen, Zhiqun Multidimensional Latent Semantic Networks for Text Humor Recognition |
title | Multidimensional Latent Semantic Networks for Text Humor Recognition |
title_full | Multidimensional Latent Semantic Networks for Text Humor Recognition |
title_fullStr | Multidimensional Latent Semantic Networks for Text Humor Recognition |
title_full_unstemmed | Multidimensional Latent Semantic Networks for Text Humor Recognition |
title_short | Multidimensional Latent Semantic Networks for Text Humor Recognition |
title_sort | multidimensional latent semantic networks for text humor recognition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370911/ https://www.ncbi.nlm.nih.gov/pubmed/35898012 http://dx.doi.org/10.3390/s22155509 |
work_keys_str_mv | AT xiongsiqi multidimensionallatentsemanticnetworksfortexthumorrecognition AT wangrongbo multidimensionallatentsemanticnetworksfortexthumorrecognition AT huangxiaoxi multidimensionallatentsemanticnetworksfortexthumorrecognition AT chenzhiqun multidimensionallatentsemanticnetworksfortexthumorrecognition |