Cargando…

Dark Current Modeling for a Polyimide—Amorphous Lead Oxide-Based Direct Conversion X-ray Detector

The reduction of the dark current (DC) to a tolerable level in amorphous selenium (a-Se) X-ray photoconductors was one of the key factors that led to the successful commercialization of a-Se-based direct conversion flat panel X-ray imagers (FPXIs) and their widespread clinical use. Here, we discuss...

Descripción completa

Detalles Bibliográficos
Autores principales: Thibault, Tristen, Grynko, Oleksandr, Pineau, Emma, Reznik, Alla
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370955/
https://www.ncbi.nlm.nih.gov/pubmed/35957386
http://dx.doi.org/10.3390/s22155829
_version_ 1784766977066139648
author Thibault, Tristen
Grynko, Oleksandr
Pineau, Emma
Reznik, Alla
author_facet Thibault, Tristen
Grynko, Oleksandr
Pineau, Emma
Reznik, Alla
author_sort Thibault, Tristen
collection PubMed
description The reduction of the dark current (DC) to a tolerable level in amorphous selenium (a-Se) X-ray photoconductors was one of the key factors that led to the successful commercialization of a-Se-based direct conversion flat panel X-ray imagers (FPXIs) and their widespread clinical use. Here, we discuss the origin of DC in another X-ray photoconductive structure that utilizes amorphous lead oxide (a-PbO) as an X-ray-to-charge transducer and polyimide (PI) as a blocking layer. The transient DC in a PI/a-PbO detector is measured at different applied electric fields (5–20 V/μm). The experimental results are used to develop a theoretical model describing the electric field-dependent transient behavior of DC. The results of the DC kinetics modeling show that the DC, shortly after the bias application, is primarily controlled by the injection of holes from the positively biased electrode and gradually decays with time to a steady-state value. DC decays by the overarching mechanism of an electric field redistribution, caused by the accumulation of trapped holes in deep localized states within the bulk of PI. Thermal generation and subsequent multiple-trapping (MT) controlled transport of holes within the a-PbO layer governs the steady-state value at all the applied fields investigated here, except for the largest applied field of 20 V/μm. This suggests that a thicker layer of PI would be more optimal to suppress DC in the PI/a-PbO detector presented here. The model can be used to find an approximate optimal thickness of PI for future iterations of PI/a-PbO detectors without the need for time and labor-intensive experimental trial and error. In addition, we show that accounting for the field-induced charge carrier release from traps, enhanced by charge hopping transitions between the traps, yields an excellent fit between the experimental and simulated results, thus, clarifying the dynamic process of reaching a steady-state occupancy level of the deep localized states in the PI. Practically, the electric field redistribution causes the internal field to increase in magnitude in the a-PbO layer, thus improving charge collection efficiency and temporal performance over time, as confirmed by experimental results. The electric field redistribution can be implemented as a warm-up time for a-PbO-based detectors.
format Online
Article
Text
id pubmed-9370955
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93709552022-08-12 Dark Current Modeling for a Polyimide—Amorphous Lead Oxide-Based Direct Conversion X-ray Detector Thibault, Tristen Grynko, Oleksandr Pineau, Emma Reznik, Alla Sensors (Basel) Article The reduction of the dark current (DC) to a tolerable level in amorphous selenium (a-Se) X-ray photoconductors was one of the key factors that led to the successful commercialization of a-Se-based direct conversion flat panel X-ray imagers (FPXIs) and their widespread clinical use. Here, we discuss the origin of DC in another X-ray photoconductive structure that utilizes amorphous lead oxide (a-PbO) as an X-ray-to-charge transducer and polyimide (PI) as a blocking layer. The transient DC in a PI/a-PbO detector is measured at different applied electric fields (5–20 V/μm). The experimental results are used to develop a theoretical model describing the electric field-dependent transient behavior of DC. The results of the DC kinetics modeling show that the DC, shortly after the bias application, is primarily controlled by the injection of holes from the positively biased electrode and gradually decays with time to a steady-state value. DC decays by the overarching mechanism of an electric field redistribution, caused by the accumulation of trapped holes in deep localized states within the bulk of PI. Thermal generation and subsequent multiple-trapping (MT) controlled transport of holes within the a-PbO layer governs the steady-state value at all the applied fields investigated here, except for the largest applied field of 20 V/μm. This suggests that a thicker layer of PI would be more optimal to suppress DC in the PI/a-PbO detector presented here. The model can be used to find an approximate optimal thickness of PI for future iterations of PI/a-PbO detectors without the need for time and labor-intensive experimental trial and error. In addition, we show that accounting for the field-induced charge carrier release from traps, enhanced by charge hopping transitions between the traps, yields an excellent fit between the experimental and simulated results, thus, clarifying the dynamic process of reaching a steady-state occupancy level of the deep localized states in the PI. Practically, the electric field redistribution causes the internal field to increase in magnitude in the a-PbO layer, thus improving charge collection efficiency and temporal performance over time, as confirmed by experimental results. The electric field redistribution can be implemented as a warm-up time for a-PbO-based detectors. MDPI 2022-08-04 /pmc/articles/PMC9370955/ /pubmed/35957386 http://dx.doi.org/10.3390/s22155829 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Thibault, Tristen
Grynko, Oleksandr
Pineau, Emma
Reznik, Alla
Dark Current Modeling for a Polyimide—Amorphous Lead Oxide-Based Direct Conversion X-ray Detector
title Dark Current Modeling for a Polyimide—Amorphous Lead Oxide-Based Direct Conversion X-ray Detector
title_full Dark Current Modeling for a Polyimide—Amorphous Lead Oxide-Based Direct Conversion X-ray Detector
title_fullStr Dark Current Modeling for a Polyimide—Amorphous Lead Oxide-Based Direct Conversion X-ray Detector
title_full_unstemmed Dark Current Modeling for a Polyimide—Amorphous Lead Oxide-Based Direct Conversion X-ray Detector
title_short Dark Current Modeling for a Polyimide—Amorphous Lead Oxide-Based Direct Conversion X-ray Detector
title_sort dark current modeling for a polyimide—amorphous lead oxide-based direct conversion x-ray detector
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370955/
https://www.ncbi.nlm.nih.gov/pubmed/35957386
http://dx.doi.org/10.3390/s22155829
work_keys_str_mv AT thibaulttristen darkcurrentmodelingforapolyimideamorphousleadoxidebaseddirectconversionxraydetector
AT grynkooleksandr darkcurrentmodelingforapolyimideamorphousleadoxidebaseddirectconversionxraydetector
AT pineauemma darkcurrentmodelingforapolyimideamorphousleadoxidebaseddirectconversionxraydetector
AT reznikalla darkcurrentmodelingforapolyimideamorphousleadoxidebaseddirectconversionxraydetector