Cargando…

A Data-Driven Approach to State of Health Estimation and Prediction for a Lithium-Ion Battery Pack of Electric Buses Based on Real-World Data

In the era of big data, using big data to realize the online estimation of battery SOH has become possible. Traditional solutions based on theoretical models cannot take into account driving behavior and complicated environmental factors. In this paper, an approximate SOH degradation model based on...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Nan, Xie, Yu, Liu, Qiao, Yue, Fenglai, Zhao, Di
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370969/
https://www.ncbi.nlm.nih.gov/pubmed/35957319
http://dx.doi.org/10.3390/s22155762
Descripción
Sumario:In the era of big data, using big data to realize the online estimation of battery SOH has become possible. Traditional solutions based on theoretical models cannot take into account driving behavior and complicated environmental factors. In this paper, an approximate SOH degradation model based on real operating data and environmental temperature data of electric vehicles (EVs) collected with a big data platform is proposed. Firstly, the health indicators are extracted from the historical operating data, and the equivalent capacity at 25 °C is obtained based on the capacity–temperature empirical formula and the capacity offset. Then, the attenuation rate during each charging and discharging process is calculated by combining the operating data and the environmental temperature. Finally, the long short-term memory (LSTM) neural network is used to learn the degradation trend of the battery and predict the future decline trend. The test results show that the proposed method has better performance.