Cargando…

Impact of Laser Intensity Noise on Dual-Comb Absolute Ranging Precision

Noise in mode-locked lasers has been a central issue for dual-comb metrological applications. In this work, we investigate the laser intensity noise on dual-comb absolute ranging precision. Two different dual-comb schemes based on linear optical sampling (LOS) and nonlinear asynchronous optical samp...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jiaqi, Shi, Haosen, Wang, Chunze, Hu, Minglie, Song, Youjian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370980/
https://www.ncbi.nlm.nih.gov/pubmed/35957332
http://dx.doi.org/10.3390/s22155770
Descripción
Sumario:Noise in mode-locked lasers has been a central issue for dual-comb metrological applications. In this work, we investigate the laser intensity noise on dual-comb absolute ranging precision. Two different dual-comb schemes based on linear optical sampling (LOS) and nonlinear asynchronous optical sampling (ASOPS) have been constructed. In the LOS scheme, the ranging precision deteriorates with the increase in laser relative intensity noise (RIN). This effect can be corrected by implementing a balanced photo-detection (BPD). In the ASOPS scheme, the experiment shows that the conversion from laser RIN to dual-comb ranging precision is negligible, making a balanced detection unnecessary for ranging precision improvement. The different manners of RIN’s impact on absolute ranging precision are attributed to the distinct cross-correlation signal patterns and the underlying time-of-flight (TOF) extraction algorithms.