Cargando…
A Rolling Bearing Fault Diagnosis Based on Conditional Depth Convolution Countermeasure Generation Networks under Small Samples
Aiming at the problems of low fault diagnosis accuracy caused by insufficient samples and unbalanced data sample distribution in bearing fault diagnosis, this paper proposes a fault diagnosis method for rolling bearings referencing conditional deep convolution adversarial generative networks (C−DCGA...
Autores principales: | Peng, Cheng, Zhang, Shuting, Li, Changyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370996/ https://www.ncbi.nlm.nih.gov/pubmed/35957215 http://dx.doi.org/10.3390/s22155658 |
Ejemplares similares
-
Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network
por: Zhang, Xiong, et al.
Publicado: (2023) -
Fault Diagnosis of Rolling Bearings in Primary Mine Fans under Sample Imbalance Conditions
por: Cui, Wei, et al.
Publicado: (2023) -
Lightweight Convolutional Neural Network and Its Application in Rolling Bearing Fault Diagnosis under Variable Working Conditions
por: Liu, Hengchang, et al.
Publicado: (2019) -
Fault Diagnosis for Rolling Bearings under Variable Conditions Based on Visual Cognition
por: Cheng, Yujie, et al.
Publicado: (2017) -
Rolling-Element Bearing Fault Diagnosis Using Improved LeNet-5 Network
por: Wan, Lanjun, et al.
Publicado: (2020)