Cargando…
Assessment of Various Machine Learning Models for Peach Maturity Prediction Using Non-Destructive Sensor Data
To date, many machine learning models have been used for peach maturity prediction using non-destructive data, but no performance comparison of the models on these datasets has been conducted. In this study, eight machine learning models were trained on a dataset containing data from 180 ‘Suncrest’...
Autores principales: | Ljubobratović, Dejan, Vuković, Marko, Brkić Bakarić, Marija, Jemrić, Tomislav, Matetić, Maja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371007/ https://www.ncbi.nlm.nih.gov/pubmed/35957349 http://dx.doi.org/10.3390/s22155791 |
Ejemplares similares
-
Influence of maturity on bruise detection of peach by structured multispectral imaging
por: Sun, Ye, et al.
Publicado: (2023) -
Rapid and Non-Destructive Detection of Compression Damage of Yellow Peach Using an Electronic Nose and Chemometrics
por: Yang, Xiangzheng, et al.
Publicado: (2020) -
Optimization of Machine Learning in Various Situations Using ICT-Based TVOC Sensors
por: Cho, Jae Hyuk, et al.
Publicado: (2020) -
An examination of the principle of non-destructive flesh firmness measurement of peach fruit by using VIS-NIR spectroscopy
por: Uwadaira, Yasuhiro, et al.
Publicado: (2018) -
Non-Destructive Sensor-Based Prediction of Maturity and Optimum Harvest Date of Sweet Cherry Fruit
por: Overbeck, Verena, et al.
Publicado: (2017)