Cargando…
A DLSTM-Network-Based Approach for Mechanical Remaining Useful Life Prediction
Remaining useful life prediction is one of the essential processes for machine system prognostics and health management. Although there are many new approaches based on deep learning for remaining useful life prediction emerging in recent years, these methods still have the following weaknesses: (1)...
Autores principales: | Liu, Yan, Liu, Zhenzhen, Zuo, Hongfu, Jiang, Heng, Li, Pengtao, Li, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371019/ https://www.ncbi.nlm.nih.gov/pubmed/35957236 http://dx.doi.org/10.3390/s22155680 |
Ejemplares similares
-
Profit prediction optimization using financial accounting information system by optimized DLSTM
por: Tang, Wei, et al.
Publicado: (2023) -
DLSTM-Based Successive Cancellation Flipping Decoder for Short Polar Codes
por: Cui, Jianming, et al.
Publicado: (2021) -
Temperature Drift Compensation of a MEMS Accelerometer Based on DLSTM and ISSA
por: Guo, Gangqiang, et al.
Publicado: (2023) -
A Spatio-Temporal Attention Mechanism Based Approach for Remaining Useful Life Prediction of Turbofan Engine
por: Peng, Cheng, et al.
Publicado: (2022) -
A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings
por: Yan, Xuguo, et al.
Publicado: (2022)