Cargando…
Rheological Properties and Melt Spinning Application of Controlled-Rheology Polypropylenes via Pilot-Scale Reactive Extrusion
Based on pilot-scale twin-screw reactive extrusion, the structural and rheological properties of controlled-rheology polypropylenes (CR-PPs) are investigated, where the effects of peroxide content and extrusion conditions such as screw configuration, extrusion temperature, and screw speed are priori...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371021/ https://www.ncbi.nlm.nih.gov/pubmed/35956739 http://dx.doi.org/10.3390/polym14153226 |
_version_ | 1784767003828944896 |
---|---|
author | Ji, Ho Suk Park, Geunyeop Jung, Hyun Wook |
author_facet | Ji, Ho Suk Park, Geunyeop Jung, Hyun Wook |
author_sort | Ji, Ho Suk |
collection | PubMed |
description | Based on pilot-scale twin-screw reactive extrusion, the structural and rheological properties of controlled-rheology polypropylenes (CR-PPs) are investigated, where the effects of peroxide content and extrusion conditions such as screw configuration, extrusion temperature, and screw speed are prioritized. The active chain cleavage reaction by a small peroxide content of less than 600 ppm inside the extruder gradually increases the melt index and narrows the molecular weight distribution of CR-PPs, thereby affording favorable properties that are applicable to the fiber spinning process. The mechanical properties of CR-PPs are slightly degraded owing to the generation of unsaturated chain ends during the reactive extrusion, which suppresses crystal growth. Under all extrusion conditions, the chain scission and thermal degradation of polypropylene samples occur actively in the harsh twin-screw extruder compared with those in the mild twin-screw extruder. Finally, it is confirmed that CR-PPs can be suitably applied to the melt-spinning process for staple fiber production, thereby guaranteeing a more stable spinning process window against draw resonance instability. |
format | Online Article Text |
id | pubmed-9371021 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93710212022-08-12 Rheological Properties and Melt Spinning Application of Controlled-Rheology Polypropylenes via Pilot-Scale Reactive Extrusion Ji, Ho Suk Park, Geunyeop Jung, Hyun Wook Polymers (Basel) Article Based on pilot-scale twin-screw reactive extrusion, the structural and rheological properties of controlled-rheology polypropylenes (CR-PPs) are investigated, where the effects of peroxide content and extrusion conditions such as screw configuration, extrusion temperature, and screw speed are prioritized. The active chain cleavage reaction by a small peroxide content of less than 600 ppm inside the extruder gradually increases the melt index and narrows the molecular weight distribution of CR-PPs, thereby affording favorable properties that are applicable to the fiber spinning process. The mechanical properties of CR-PPs are slightly degraded owing to the generation of unsaturated chain ends during the reactive extrusion, which suppresses crystal growth. Under all extrusion conditions, the chain scission and thermal degradation of polypropylene samples occur actively in the harsh twin-screw extruder compared with those in the mild twin-screw extruder. Finally, it is confirmed that CR-PPs can be suitably applied to the melt-spinning process for staple fiber production, thereby guaranteeing a more stable spinning process window against draw resonance instability. MDPI 2022-08-08 /pmc/articles/PMC9371021/ /pubmed/35956739 http://dx.doi.org/10.3390/polym14153226 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ji, Ho Suk Park, Geunyeop Jung, Hyun Wook Rheological Properties and Melt Spinning Application of Controlled-Rheology Polypropylenes via Pilot-Scale Reactive Extrusion |
title | Rheological Properties and Melt Spinning Application of Controlled-Rheology Polypropylenes via Pilot-Scale Reactive Extrusion |
title_full | Rheological Properties and Melt Spinning Application of Controlled-Rheology Polypropylenes via Pilot-Scale Reactive Extrusion |
title_fullStr | Rheological Properties and Melt Spinning Application of Controlled-Rheology Polypropylenes via Pilot-Scale Reactive Extrusion |
title_full_unstemmed | Rheological Properties and Melt Spinning Application of Controlled-Rheology Polypropylenes via Pilot-Scale Reactive Extrusion |
title_short | Rheological Properties and Melt Spinning Application of Controlled-Rheology Polypropylenes via Pilot-Scale Reactive Extrusion |
title_sort | rheological properties and melt spinning application of controlled-rheology polypropylenes via pilot-scale reactive extrusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371021/ https://www.ncbi.nlm.nih.gov/pubmed/35956739 http://dx.doi.org/10.3390/polym14153226 |
work_keys_str_mv | AT jihosuk rheologicalpropertiesandmeltspinningapplicationofcontrolledrheologypolypropylenesviapilotscalereactiveextrusion AT parkgeunyeop rheologicalpropertiesandmeltspinningapplicationofcontrolledrheologypolypropylenesviapilotscalereactiveextrusion AT junghyunwook rheologicalpropertiesandmeltspinningapplicationofcontrolledrheologypolypropylenesviapilotscalereactiveextrusion |