Cargando…
Crop Mapping Using the Historical Crop Data Layer and Deep Neural Networks: A Case Study in Jilin Province, China
Machine learning combined with satellite image time series can quickly, and reliably be implemented to map crop distribution and growth monitoring necessary for food security. However, obtaining a large number of field survey samples for classifier training is often time-consuming and costly, which...
Autores principales: | Jiang, Deyang, Chen, Shengbo, Useya, Juliana, Cao, Lisai, Lu, Tianqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371029/ https://www.ncbi.nlm.nih.gov/pubmed/35957410 http://dx.doi.org/10.3390/s22155853 |
Ejemplares similares
-
Decision-level fusion of Sentinel-1 SAR and Landsat 8 OLI texture features for crop discrimination and classification: case of Masvingo, Zimbabwe
por: Chen, Shengbo, et al.
Publicado: (2020) -
Impact of Jilin Province Stroke Emergency Maps on Acute Stroke Care Improvement in Northeast China
por: Jin, Hang, et al.
Publicado: (2020) -
GNSS Positioning by CORS and EGM2008 in Jilin Province, China
por: Wu, Qiong, et al.
Publicado: (2015) -
Molecular Characterization of the Measles Virus Genotypes in JiLin Province, China
por: Wei, Chengguo, et al.
Publicado: (2012) -
Prevalence of fish-borne zoonotic trematode infection in Jilin Province, China
por: Wang, Yuru, et al.
Publicado: (2022)