Cargando…
Physical Property of 3D-Printed N-Pointed Star-Shaped Outsole Prepared by FDM 3D Printer Using the Lightweight TPU
This investigation has shown the feasibility of modulation in physical properties for multiple outsole designs with 3-, 4-, and 6-pointed star-shaped patterns and various thicknesses for 5, 7.5, and 10 mm, which were fabricated with a FDM 3D printer using lightweight TPU filament, where the physical...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371032/ https://www.ncbi.nlm.nih.gov/pubmed/35956702 http://dx.doi.org/10.3390/polym14153189 |
_version_ | 1784767007377326080 |
---|---|
author | Chen, Xiaokui Lee, Sunhee |
author_facet | Chen, Xiaokui Lee, Sunhee |
author_sort | Chen, Xiaokui |
collection | PubMed |
description | This investigation has shown the feasibility of modulation in physical properties for multiple outsole designs with 3-, 4-, and 6-pointed star-shaped patterns and various thicknesses for 5, 7.5, and 10 mm, which were fabricated with a FDM 3D printer using lightweight TPU filament, where the physical and foot pressure distribution properties were evaluated to confirm the best quality and comfort outsole. Through varying the structural pattern designs in combination with optimal 3D-printing parameters, the physical properties of the TPU LW-3, 4, and 6-PS outsoles were confirmed with enhanced properties along with increased thicknesses. In this study, the morphology images revealed a lower foaming state, a better-fused interlayer, and fewer microvoids in the TPU LW-3, 4, and 6-PS outsole, as the thickness developed, indicating enhanced density and rigidity. The best physical property was confirmed at LW 3-PS-10 with 0.706 specific gravity, 68.3 g weight, 0.232 μ(s) static coefficient and 0.199 μ(k) dynamic coefficient, 236% NSB abrasion, 127 mm(3) DIN abrasion, 30% ball drop and 28% pendulum resilience, verifying the most high-quality, safe, and durable prototype. Regarding comfort, the 3-PS-10 also was regarded as comfortable concerning the wearable parts by virtue of its excellent physical properties, as well as its having the largest pressure area and the lower pressure force; meanwhile, the 4PS and 6PS also exhibited similar conditions for different thicknesses. Since not much distinct difference in pressure distribution compared to others was exhibited, it is suggested to explore optimization solutions to update the comfort of the footwear in future research. |
format | Online Article Text |
id | pubmed-9371032 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93710322022-08-12 Physical Property of 3D-Printed N-Pointed Star-Shaped Outsole Prepared by FDM 3D Printer Using the Lightweight TPU Chen, Xiaokui Lee, Sunhee Polymers (Basel) Article This investigation has shown the feasibility of modulation in physical properties for multiple outsole designs with 3-, 4-, and 6-pointed star-shaped patterns and various thicknesses for 5, 7.5, and 10 mm, which were fabricated with a FDM 3D printer using lightweight TPU filament, where the physical and foot pressure distribution properties were evaluated to confirm the best quality and comfort outsole. Through varying the structural pattern designs in combination with optimal 3D-printing parameters, the physical properties of the TPU LW-3, 4, and 6-PS outsoles were confirmed with enhanced properties along with increased thicknesses. In this study, the morphology images revealed a lower foaming state, a better-fused interlayer, and fewer microvoids in the TPU LW-3, 4, and 6-PS outsole, as the thickness developed, indicating enhanced density and rigidity. The best physical property was confirmed at LW 3-PS-10 with 0.706 specific gravity, 68.3 g weight, 0.232 μ(s) static coefficient and 0.199 μ(k) dynamic coefficient, 236% NSB abrasion, 127 mm(3) DIN abrasion, 30% ball drop and 28% pendulum resilience, verifying the most high-quality, safe, and durable prototype. Regarding comfort, the 3-PS-10 also was regarded as comfortable concerning the wearable parts by virtue of its excellent physical properties, as well as its having the largest pressure area and the lower pressure force; meanwhile, the 4PS and 6PS also exhibited similar conditions for different thicknesses. Since not much distinct difference in pressure distribution compared to others was exhibited, it is suggested to explore optimization solutions to update the comfort of the footwear in future research. MDPI 2022-08-04 /pmc/articles/PMC9371032/ /pubmed/35956702 http://dx.doi.org/10.3390/polym14153189 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Xiaokui Lee, Sunhee Physical Property of 3D-Printed N-Pointed Star-Shaped Outsole Prepared by FDM 3D Printer Using the Lightweight TPU |
title | Physical Property of 3D-Printed N-Pointed Star-Shaped Outsole Prepared by FDM 3D Printer Using the Lightweight TPU |
title_full | Physical Property of 3D-Printed N-Pointed Star-Shaped Outsole Prepared by FDM 3D Printer Using the Lightweight TPU |
title_fullStr | Physical Property of 3D-Printed N-Pointed Star-Shaped Outsole Prepared by FDM 3D Printer Using the Lightweight TPU |
title_full_unstemmed | Physical Property of 3D-Printed N-Pointed Star-Shaped Outsole Prepared by FDM 3D Printer Using the Lightweight TPU |
title_short | Physical Property of 3D-Printed N-Pointed Star-Shaped Outsole Prepared by FDM 3D Printer Using the Lightweight TPU |
title_sort | physical property of 3d-printed n-pointed star-shaped outsole prepared by fdm 3d printer using the lightweight tpu |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371032/ https://www.ncbi.nlm.nih.gov/pubmed/35956702 http://dx.doi.org/10.3390/polym14153189 |
work_keys_str_mv | AT chenxiaokui physicalpropertyof3dprintednpointedstarshapedoutsolepreparedbyfdm3dprinterusingthelightweighttpu AT leesunhee physicalpropertyof3dprintednpointedstarshapedoutsolepreparedbyfdm3dprinterusingthelightweighttpu |