Cargando…
Transfer-Learning-Based Intrusion Detection Framework in IoT Networks
Cyberattacks in the Internet of Things (IoT) are growing exponentially, especially zero-day attacks mostly driven by security weaknesses on IoT networks. Traditional intrusion detection systems (IDSs) adopted machine learning (ML), especially deep Learning (DL), to improve the detection of cyberatta...
Autores principales: | Rodríguez, Eva, Valls, Pol, Otero, Beatriz, Costa, Juan José, Verdú, Javier, Pajuelo, Manuel Alejandro, Canal, Ramon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371036/ https://www.ncbi.nlm.nih.gov/pubmed/35957178 http://dx.doi.org/10.3390/s22155621 |
Ejemplares similares
-
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022) -
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
por: Essop, Ismael, et al.
Publicado: (2021) -
IoT empowered smart cybersecurity framework for intrusion detection in internet of drones
por: Ashraf, Syeda Nazia, et al.
Publicado: (2023) -
An AI-Driven Hybrid Framework for Intrusion Detection in IoT-Enabled E-Health
por: Wahab, Fazal, et al.
Publicado: (2022)