Cargando…

Subject-Dependent Artifact Removal for Enhancing Motor Imagery Classifier Performance under Poor Skills

The Electroencephalography (EEG)-based motor imagery (MI) paradigm is one of the most studied technologies for Brain-Computer Interface (BCI) development. Still, the low Signal-to-Noise Ratio (SNR) poses a challenge when constructing EEG-based BCI systems. Moreover, the non-stationary and nonlinear...

Descripción completa

Detalles Bibliográficos
Autores principales: Tobón-Henao, Mateo, Álvarez-Meza, Andrés, Castellanos-Domínguez, Germán
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371054/
https://www.ncbi.nlm.nih.gov/pubmed/35957329
http://dx.doi.org/10.3390/s22155771
Descripción
Sumario:The Electroencephalography (EEG)-based motor imagery (MI) paradigm is one of the most studied technologies for Brain-Computer Interface (BCI) development. Still, the low Signal-to-Noise Ratio (SNR) poses a challenge when constructing EEG-based BCI systems. Moreover, the non-stationary and nonlinear signal issues, the low-spatial data resolution, and the inter- and intra-subject variability hamper the extraction of discriminant features. Indeed, subjects with poor motor skills have difficulties in practicing MI tasks against low SNR scenarios. Here, we propose a subject-dependent preprocessing approach that includes the well-known Surface Laplacian Filtering and Independent Component Analysis algorithms to remove signal artifacts based on the MI performance. In addition, power- and phase-based functional connectivity measures are studied to extract relevant and interpretable patterns and identify subjects of inefficency. As a result, our proposal, Subject-dependent Artifact Removal (SD-AR), improves the MI classification performance in subjects with poor motor skills. Consequently, electrooculography and volume-conduction EEG artifacts are mitigated within a functional connectivity feature-extraction strategy, which favors the classification performance of a straightforward linear classifier.