Cargando…
Subject-Dependent Artifact Removal for Enhancing Motor Imagery Classifier Performance under Poor Skills
The Electroencephalography (EEG)-based motor imagery (MI) paradigm is one of the most studied technologies for Brain-Computer Interface (BCI) development. Still, the low Signal-to-Noise Ratio (SNR) poses a challenge when constructing EEG-based BCI systems. Moreover, the non-stationary and nonlinear...
Autores principales: | Tobón-Henao, Mateo, Álvarez-Meza, Andrés, Castellanos-Domínguez, Germán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371054/ https://www.ncbi.nlm.nih.gov/pubmed/35957329 http://dx.doi.org/10.3390/s22155771 |
Ejemplares similares
-
Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity
por: Collazos-Huertas, Diego Fabian, et al.
Publicado: (2023) -
Deep Neural Regression Prediction of Motor Imagery Skills Using EEG Functional Connectivity Indicators
por: Caicedo-Acosta, Julian, et al.
Publicado: (2021) -
Regression Networks for Neurophysiological Indicator Evaluation in Practicing Motor Imagery Tasks
por: Velasquez-Martinez, Luisa, et al.
Publicado: (2020) -
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
por: García-Murillo, Daniel Guillermo, et al.
Publicado: (2023) -
Dynamic Modeling of Common Brain Neural Activity in Motor Imagery Tasks
por: Velasquez-Martinez, Luisa F., et al.
Publicado: (2020)