Cargando…
Semi-Supervised Domain Adaptation for Multi-Label Classification on Nonintrusive Load Monitoring
Nonintrusive load monitoring (NILM) is a technology that analyzes the load consumption and usage of an appliance from the total load. NILM is becoming increasingly important because residential and commercial power consumption account for about 60% of global energy consumption. Deep neural network-b...
Autores principales: | Hur, Cheong-Hwan, Lee, Han-Eum, Kim, Young-Joo, Kang, Sang-Gil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371079/ https://www.ncbi.nlm.nih.gov/pubmed/35957392 http://dx.doi.org/10.3390/s22155838 |
Ejemplares similares
-
A Field Study of Nonintrusive Load Monitoring Devices and Implications for Load Disaggregation
por: Mayhorn, Ebony, et al.
Publicado: (2023) -
Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature
por: Kim, Jihyun, et al.
Publicado: (2017) -
Explainability-Informed Feature Selection and Performance Prediction for Nonintrusive Load Monitoring †
por: Mollel, Rachel Stephen, et al.
Publicado: (2023) -
Semi-Supervised Domain Adaptation for Holistic Counting under Label Gap
por: Litrico, Mattia, et al.
Publicado: (2021) -
Corrigendum to “Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature”
por: Kim, Jihyun, et al.
Publicado: (2018)