Cargando…
The Robust Multi-Scale Deep-SVDD Model for Anomaly Online Detection of Rolling Bearings
Aiming at the online detection problem of rolling bearings, the limited amount of target bearing data leads to insufficient model in training and feature representation. It is difficult for the online detection model to construct an accurate decision boundary. To solve the problem, a multi-scale rob...
Autores principales: | Kou, Linlin, Chen, Jiaxian, Qin, Yong, Mao, Wentao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371097/ https://www.ncbi.nlm.nih.gov/pubmed/35957238 http://dx.doi.org/10.3390/s22155681 |
Ejemplares similares
-
Rolling Bearing Performance Degradation Assessment with Adaptive Sensitive Feature Selection and Multi-Strategy Optimized SVDD
por: Feng, Zhengjiang, et al.
Publicado: (2023) -
AMAnD: an automated metagenome anomaly detection methodology utilizing DeepSVDD neural networks
por: Price, Colin, et al.
Publicado: (2023) -
Deep SVDD and Transfer Learning for COVID-19 Diagnosis Using CT Images
por: Alhadad, Akram A., et al.
Publicado: (2023) -
Rolling Element Bearing Fault Diagnosis under Impulsive Noise Environment Based on Cyclic Correntropy Spectrum
por: Zhao, Xuejun, et al.
Publicado: (2019) -
A New Dual-Input Deep Anomaly Detection Method for Early Faults Warning of Rolling Bearings
por: Kang, Yuxiang, et al.
Publicado: (2023)