Cargando…
Entropy-Aware Model Initialization for Effective Exploration in Deep Reinforcement Learning
Effective exploration is one of the critical factors affecting performance in deep reinforcement learning. Agents acquire data to learn the optimal policy through exploration, and if it is not guaranteed, the data quality deteriorates, which leads to performance degradation. This study investigates...
Autores principales: | Jang, Sooyoung, Kim, Hyung-Il |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371101/ https://www.ncbi.nlm.nih.gov/pubmed/35957399 http://dx.doi.org/10.3390/s22155845 |
Ejemplares similares
-
Unifying cardiovascular modelling with deep reinforcement learning for uncertainty aware control of sepsis treatment
por: Nanayakkara, Thesath, et al.
Publicado: (2022) -
DRLBTS: deep reinforcement learning-aware blockchain-based healthcare system
por: Lakhan, Abdullah, et al.
Publicado: (2023) -
Structural break-aware pairs trading strategy using deep reinforcement learning
por: Lu, Jing-You, et al.
Publicado: (2021) -
Branes with Brains: Exploring String Vacua with Deep Reinforcement Learning
por: Halverson, James, et al.
Publicado: (2019) -
Proactive Handover Decision for UAVs with Deep Reinforcement Learning
por: Jang, Younghoon, et al.
Publicado: (2022)