Cargando…
Towards an Explainable Universal Feature Set for IoT Intrusion Detection
As IoT devices’ adoption grows rapidly, security plays an important role in our daily lives. As part of the effort to counter these security threats in recent years, many IoT intrusion detection datasets were presented, such as TON_IoT, BoT-IoT, and Aposemat IoT-23. These datasets were used to build...
Autores principales: | Alani, Mohammed M., Miri, Ali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371123/ https://www.ncbi.nlm.nih.gov/pubmed/35957249 http://dx.doi.org/10.3390/s22155690 |
Ejemplares similares
-
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022) -
Examining the Suitability of NetFlow Features in Detecting IoT Network Intrusions
por: Awad, Mohammed, et al.
Publicado: (2022) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
A Novel Feature-Selection Algorithm in IoT Networks for Intrusion Detection
por: Nazir, Anjum, et al.
Publicado: (2023) -
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
por: Essop, Ismael, et al.
Publicado: (2021)