Cargando…
SMaTE: A Segment-Level Feature Mixing and Temporal Encoding Framework for Facial Expression Recognition
Despite advanced machine learning methods, the implementation of emotion recognition systems based on real-world video content remains challenging. Videos may contain data such as images, audio, and text. However, the application of multimodal models using two or more types of data to real-world vid...
Autores principales: | Kim, Nayeon, Cho, Sukhee, Bae, Byungjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371125/ https://www.ncbi.nlm.nih.gov/pubmed/35957313 http://dx.doi.org/10.3390/s22155753 |
Ejemplares similares
-
Recognition Memory is Improved by a Structured Temporal Framework During Encoding
por: Thavabalasingam, Sathesan, et al.
Publicado: (2016) -
Deep-Learning-Based Stress Recognition with Spatial-Temporal Facial Information
por: Jeon, Taejae, et al.
Publicado: (2021) -
Role of Temporal Processing Stages by Inferior Temporal Neurons in Facial Recognition
por: Sugase-Miyamoto, Yasuko, et al.
Publicado: (2011) -
Building of the metal framework of SMA18 at Point 1.8.
por: Serge Dailler
Publicado: (1999) -
Building of the metal framework of SMA18 at Point 1.8.
por: Serge Dailler
Publicado: (1999)