Cargando…
Dual-Coupled CNN-GCN-Based Classification for Hyperspectral and LiDAR Data
Deep learning techniques have brought substantial performance gains to remote sensing image classification. Among them, convolutional neural networks (CNN) can extract rich spatial and spectral features from hyperspectral images in a short-range region, whereas graph convolutional networks (GCN) can...
Autores principales: | Wang, Lei, Wang, Xili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371133/ https://www.ncbi.nlm.nih.gov/pubmed/35957291 http://dx.doi.org/10.3390/s22155735 |
Ejemplares similares
-
Feasibility Study on the Classification of Persimmon Trees’ Components Based on Hyperspectral LiDAR
por: Shao, Hui, et al.
Publicado: (2023) -
Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data
por: Dalponte, Michele, et al.
Publicado: (2019) -
Evaluation of hyperspectral LiDAR for monitoring rice leaf nitrogen by comparison with multispectral LiDAR and passive spectrometer
por: Sun, Jia, et al.
Publicado: (2017) -
Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network
por: Chang, Zhanyuan, et al.
Publicado: (2020) -
Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source
por: Chen, Yuwei, et al.
Publicado: (2010)