Cargando…
A Novel Deep-Learning Model Compression Based on Filter-Stripe Group Pruning and Its IoT Application
Nowadays, there is a tradeoff between the deep-learning module-compression ratio and the module accuracy. In this paper, a strategy for refining the pruning quantification and weights based on neural network filters is proposed. Firstly, filters in the neural network were refined into strip-like fil...
Autores principales: | Zhao, Ming, Tong, Xindi, Wu, Weixian, Wang, Zhen, Zhou, Bingxue, Huang, Xiaodan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371170/ https://www.ncbi.nlm.nih.gov/pubmed/35957176 http://dx.doi.org/10.3390/s22155623 |
Ejemplares similares
-
Memory-Based Pruning of Deep Neural Networks for IoT Devices Applied to Flood Detection
por: Fernandes Junior, Francisco Erivaldo, et al.
Publicado: (2021) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023) -
Hands-on deep learning for IoT: train neural network models to develop intelligent IoT applications
por: Karim, Rezaul, et al.
Publicado: (2019) -
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022)