Cargando…

Improved RANSAC Point Cloud Spherical Target Detection and Parameter Estimation Method Based on Principal Curvature Constraint

Spherical targets are widely used in coordinate unification of large-scale combined measurements. Through its central coordinates, scanned point cloud data from different locations can be converted into a unified coordinate reference system. However, point cloud sphere detection has the disadvantage...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Qinghua, Liu, Jiacheng, Gao, Can, Wang, Biao, Shen, Gaojian, Li, Zhiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371188/
https://www.ncbi.nlm.nih.gov/pubmed/35957407
http://dx.doi.org/10.3390/s22155850
Descripción
Sumario:Spherical targets are widely used in coordinate unification of large-scale combined measurements. Through its central coordinates, scanned point cloud data from different locations can be converted into a unified coordinate reference system. However, point cloud sphere detection has the disadvantages of errors and slow detection time. For this reason, a novel method of spherical object detection and parameter estimation based on an improved random sample consensus (RANSAC) algorithm is proposed. The method is based on the RANSAC algorithm. Firstly, the principal curvature of point cloud data is calculated. Combined with the k-d nearest neighbor search algorithm, the principal curvature constraint of random sampling points is implemented to improve the quality of sample points selected by RANSAC and increase the detection speed. Secondly, the RANSAC method is combined with the total least squares method. The total least squares method is used to estimate the inner point set of spherical objects obtained by the RANSAC algorithm. The experimental results demonstrate that the method outperforms the conventional RANSAC algorithm in terms of accuracy and detection speed in estimating sphere parameters.