Cargando…
Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer †
Breast cancer (BC) diagnosis is made by a pathologist who analyzes a portion of the breast tissue under the microscope and performs a histological evaluation. This evaluation aims to determine the grade of cellular differentiation and the aggressiveness of the tumor by the Nottingham Grade Classific...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371191/ https://www.ncbi.nlm.nih.gov/pubmed/35957203 http://dx.doi.org/10.3390/s22155649 |
_version_ | 1784767061642182656 |
---|---|
author | Peregrina-Barreto, Hayde Ramirez-Guatemala, Valeria Y. Lopez-Armas, Gabriela C. Cruz-Ramos, Jose A. |
author_facet | Peregrina-Barreto, Hayde Ramirez-Guatemala, Valeria Y. Lopez-Armas, Gabriela C. Cruz-Ramos, Jose A. |
author_sort | Peregrina-Barreto, Hayde |
collection | PubMed |
description | Breast cancer (BC) diagnosis is made by a pathologist who analyzes a portion of the breast tissue under the microscope and performs a histological evaluation. This evaluation aims to determine the grade of cellular differentiation and the aggressiveness of the tumor by the Nottingham Grade Classification System (NGS). Nowadays, digital pathology is an innovative tool for pathologists in diagnosis and acquiring new learning. However, a recurring problem in health services is the excessive workload in all medical services. For this reason, it is required to develop computational tools that assist histological evaluation. This work proposes a methodology for the quantitative analysis of BC tissue that follows NGS. The proposed methodology is based on digital image processing techniques through which the BC tissue can be characterized automatically. Moreover, the proposed nuclei characterization was helpful for grade differentiation in carcinoma images of the BC tissue reaching an 0.84 accuracy. In addition, a metric was proposed to assess the likelihood of a structure in the tissue corresponding to a tubule by considering spatial and geometrical characteristics between lumina and its surrounding nuclei, reaching an accuracy of 0.83. Tests were performed from different databases and under various magnification and staining contrast conditions, showing that the methodology is reliable for histological breast tissue analysis. |
format | Online Article Text |
id | pubmed-9371191 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93711912022-08-12 Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer † Peregrina-Barreto, Hayde Ramirez-Guatemala, Valeria Y. Lopez-Armas, Gabriela C. Cruz-Ramos, Jose A. Sensors (Basel) Article Breast cancer (BC) diagnosis is made by a pathologist who analyzes a portion of the breast tissue under the microscope and performs a histological evaluation. This evaluation aims to determine the grade of cellular differentiation and the aggressiveness of the tumor by the Nottingham Grade Classification System (NGS). Nowadays, digital pathology is an innovative tool for pathologists in diagnosis and acquiring new learning. However, a recurring problem in health services is the excessive workload in all medical services. For this reason, it is required to develop computational tools that assist histological evaluation. This work proposes a methodology for the quantitative analysis of BC tissue that follows NGS. The proposed methodology is based on digital image processing techniques through which the BC tissue can be characterized automatically. Moreover, the proposed nuclei characterization was helpful for grade differentiation in carcinoma images of the BC tissue reaching an 0.84 accuracy. In addition, a metric was proposed to assess the likelihood of a structure in the tissue corresponding to a tubule by considering spatial and geometrical characteristics between lumina and its surrounding nuclei, reaching an accuracy of 0.83. Tests were performed from different databases and under various magnification and staining contrast conditions, showing that the methodology is reliable for histological breast tissue analysis. MDPI 2022-07-28 /pmc/articles/PMC9371191/ /pubmed/35957203 http://dx.doi.org/10.3390/s22155649 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Peregrina-Barreto, Hayde Ramirez-Guatemala, Valeria Y. Lopez-Armas, Gabriela C. Cruz-Ramos, Jose A. Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer † |
title | Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer † |
title_full | Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer † |
title_fullStr | Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer † |
title_full_unstemmed | Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer † |
title_short | Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer † |
title_sort | characterization of nuclear pleomorphism and tubules in histopathological images of breast cancer † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371191/ https://www.ncbi.nlm.nih.gov/pubmed/35957203 http://dx.doi.org/10.3390/s22155649 |
work_keys_str_mv | AT peregrinabarretohayde characterizationofnuclearpleomorphismandtubulesinhistopathologicalimagesofbreastcancer AT ramirezguatemalavaleriay characterizationofnuclearpleomorphismandtubulesinhistopathologicalimagesofbreastcancer AT lopezarmasgabrielac characterizationofnuclearpleomorphismandtubulesinhistopathologicalimagesofbreastcancer AT cruzramosjosea characterizationofnuclearpleomorphismandtubulesinhistopathologicalimagesofbreastcancer |