Cargando…

Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer †

Breast cancer (BC) diagnosis is made by a pathologist who analyzes a portion of the breast tissue under the microscope and performs a histological evaluation. This evaluation aims to determine the grade of cellular differentiation and the aggressiveness of the tumor by the Nottingham Grade Classific...

Descripción completa

Detalles Bibliográficos
Autores principales: Peregrina-Barreto, Hayde, Ramirez-Guatemala, Valeria Y., Lopez-Armas, Gabriela C., Cruz-Ramos, Jose A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371191/
https://www.ncbi.nlm.nih.gov/pubmed/35957203
http://dx.doi.org/10.3390/s22155649
_version_ 1784767061642182656
author Peregrina-Barreto, Hayde
Ramirez-Guatemala, Valeria Y.
Lopez-Armas, Gabriela C.
Cruz-Ramos, Jose A.
author_facet Peregrina-Barreto, Hayde
Ramirez-Guatemala, Valeria Y.
Lopez-Armas, Gabriela C.
Cruz-Ramos, Jose A.
author_sort Peregrina-Barreto, Hayde
collection PubMed
description Breast cancer (BC) diagnosis is made by a pathologist who analyzes a portion of the breast tissue under the microscope and performs a histological evaluation. This evaluation aims to determine the grade of cellular differentiation and the aggressiveness of the tumor by the Nottingham Grade Classification System (NGS). Nowadays, digital pathology is an innovative tool for pathologists in diagnosis and acquiring new learning. However, a recurring problem in health services is the excessive workload in all medical services. For this reason, it is required to develop computational tools that assist histological evaluation. This work proposes a methodology for the quantitative analysis of BC tissue that follows NGS. The proposed methodology is based on digital image processing techniques through which the BC tissue can be characterized automatically. Moreover, the proposed nuclei characterization was helpful for grade differentiation in carcinoma images of the BC tissue reaching an 0.84 accuracy. In addition, a metric was proposed to assess the likelihood of a structure in the tissue corresponding to a tubule by considering spatial and geometrical characteristics between lumina and its surrounding nuclei, reaching an accuracy of 0.83. Tests were performed from different databases and under various magnification and staining contrast conditions, showing that the methodology is reliable for histological breast tissue analysis.
format Online
Article
Text
id pubmed-9371191
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93711912022-08-12 Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer † Peregrina-Barreto, Hayde Ramirez-Guatemala, Valeria Y. Lopez-Armas, Gabriela C. Cruz-Ramos, Jose A. Sensors (Basel) Article Breast cancer (BC) diagnosis is made by a pathologist who analyzes a portion of the breast tissue under the microscope and performs a histological evaluation. This evaluation aims to determine the grade of cellular differentiation and the aggressiveness of the tumor by the Nottingham Grade Classification System (NGS). Nowadays, digital pathology is an innovative tool for pathologists in diagnosis and acquiring new learning. However, a recurring problem in health services is the excessive workload in all medical services. For this reason, it is required to develop computational tools that assist histological evaluation. This work proposes a methodology for the quantitative analysis of BC tissue that follows NGS. The proposed methodology is based on digital image processing techniques through which the BC tissue can be characterized automatically. Moreover, the proposed nuclei characterization was helpful for grade differentiation in carcinoma images of the BC tissue reaching an 0.84 accuracy. In addition, a metric was proposed to assess the likelihood of a structure in the tissue corresponding to a tubule by considering spatial and geometrical characteristics between lumina and its surrounding nuclei, reaching an accuracy of 0.83. Tests were performed from different databases and under various magnification and staining contrast conditions, showing that the methodology is reliable for histological breast tissue analysis. MDPI 2022-07-28 /pmc/articles/PMC9371191/ /pubmed/35957203 http://dx.doi.org/10.3390/s22155649 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Peregrina-Barreto, Hayde
Ramirez-Guatemala, Valeria Y.
Lopez-Armas, Gabriela C.
Cruz-Ramos, Jose A.
Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer †
title Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer †
title_full Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer †
title_fullStr Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer †
title_full_unstemmed Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer †
title_short Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer †
title_sort characterization of nuclear pleomorphism and tubules in histopathological images of breast cancer †
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371191/
https://www.ncbi.nlm.nih.gov/pubmed/35957203
http://dx.doi.org/10.3390/s22155649
work_keys_str_mv AT peregrinabarretohayde characterizationofnuclearpleomorphismandtubulesinhistopathologicalimagesofbreastcancer
AT ramirezguatemalavaleriay characterizationofnuclearpleomorphismandtubulesinhistopathologicalimagesofbreastcancer
AT lopezarmasgabrielac characterizationofnuclearpleomorphismandtubulesinhistopathologicalimagesofbreastcancer
AT cruzramosjosea characterizationofnuclearpleomorphismandtubulesinhistopathologicalimagesofbreastcancer