Cargando…
Interpretable Passive Multi-Modal Sensor Fusion for Human Identification and Activity Recognition
Human monitoring applications in indoor environments depend on accurate human identification and activity recognition (HIAR). Single modality sensor systems have shown to be accurate for HIAR, but there are some shortcomings to these systems, such as privacy, intrusion, and costs. To combat these sh...
Autores principales: | Yuan, Liangqi, Andrews, Jack, Mu, Huaizheng, Vakil, Asad, Ewing, Robert, Blasch, Erik, Li, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371208/ https://www.ncbi.nlm.nih.gov/pubmed/35957343 http://dx.doi.org/10.3390/s22155787 |
Ejemplares similares
-
Human Occupancy Detection via Passive Cognitive Radio
por: Liu, Jenny, et al.
Publicado: (2020) -
Finding Explanations in AI Fusion of Electro-Optical/Passive Radio-Frequency Data
por: Vakil, Asad, et al.
Publicado: (2023) -
Facial Micro-Expression Recognition Enhanced by Score Fusion and a Hybrid Model from Convolutional LSTM and Vision Transformer
por: Zheng, Yufeng, et al.
Publicado: (2023) -
Recognition of multi-modal fusion images with irregular interference
por: Wang, Yawei, et al.
Publicado: (2022) -
Evaluating Ensemble Learning Methods for Multi-Modal Emotion Recognition Using Sensor Data Fusion
por: Younis, Eman M. G., et al.
Publicado: (2022)