Cargando…
Blockchain Socket Factories with RMI-Enabled Framework for Fine-Grained Healthcare Applications
The usage of digital and intelligent healthcare applications on mobile devices has grown progressively. These applications are generally distributed and access remote healthcare services on the user’s applications from different hospital sources. These applications are designed based on client–serve...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371211/ https://www.ncbi.nlm.nih.gov/pubmed/35957396 http://dx.doi.org/10.3390/s22155833 |
Sumario: | The usage of digital and intelligent healthcare applications on mobile devices has grown progressively. These applications are generally distributed and access remote healthcare services on the user’s applications from different hospital sources. These applications are designed based on client–server architecture and different paradigms such as socket, remote procedure call, and remote method invocation (RMI). However, these existing paradigms do not offer a security mechanism for healthcare applications in distributed mobile-fog-cloud networks. This paper devises a blockchain-socket-RMI-based framework for fine-grained healthcare applications in the mobile-fog-cloud network. This study introduces a new open healthcare framework for applied research purposes and has blockchain-socket-RMI abstraction level classes for healthcare applications. The goal is to meet the security and deadline requirements of fine-grained healthcare tasks and minimize execution and data validation costs during processing applications in the system. This study introduces a partial proof of validation (PPoV) scheme that converts the workload into the hash and validates it among mobile, fog, and cloud nodes during offloading, execution, and storing data in the secure form. Simulation discussions illustrate that the proposed blockchain-socket-RMI minimizes the processing and blockchain costs and meets the security and deadline requirements of fine-grained healthcare tasks of applications as compared to existing frameworks in work. |
---|