Cargando…
Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images
Nasopharyngeal carcinoma (NPC) is a category of tumours with a high incidence in head-and-neck. To treat nasopharyngeal cancer, doctors invariably need to perform focal segmentation. However, manual segmentation is time consuming and laborious for doctors and the existing automatic segmentation meth...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371217/ https://www.ncbi.nlm.nih.gov/pubmed/35957432 http://dx.doi.org/10.3390/s22155875 |
_version_ | 1784767070507892736 |
---|---|
author | Liu, Yi Han, Guanghui Liu, Xiujian |
author_facet | Liu, Yi Han, Guanghui Liu, Xiujian |
author_sort | Liu, Yi |
collection | PubMed |
description | Nasopharyngeal carcinoma (NPC) is a category of tumours with a high incidence in head-and-neck. To treat nasopharyngeal cancer, doctors invariably need to perform focal segmentation. However, manual segmentation is time consuming and laborious for doctors and the existing automatic segmentation methods require large computing resources, which makes some small and medium-sized hospitals unaffordable. To enable small and medium-sized hospitals with limited computational resources to run the model smoothly and improve the accuracy of structure, we propose a new LW-UNet network. The network utilises lightweight modules to form the Compound Scaling Encoder and combines the benefits of UNet to make the model both lightweight and accurate. Our model achieves a high accuracy with a Dice coefficient value of 0.813 with 3.55 M parameters and 7.51 G of FLOPs within 0.1 s (testing time in GPU), which is the best result compared with four other state-of-the-art models. |
format | Online Article Text |
id | pubmed-9371217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93712172022-08-12 Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images Liu, Yi Han, Guanghui Liu, Xiujian Sensors (Basel) Article Nasopharyngeal carcinoma (NPC) is a category of tumours with a high incidence in head-and-neck. To treat nasopharyngeal cancer, doctors invariably need to perform focal segmentation. However, manual segmentation is time consuming and laborious for doctors and the existing automatic segmentation methods require large computing resources, which makes some small and medium-sized hospitals unaffordable. To enable small and medium-sized hospitals with limited computational resources to run the model smoothly and improve the accuracy of structure, we propose a new LW-UNet network. The network utilises lightweight modules to form the Compound Scaling Encoder and combines the benefits of UNet to make the model both lightweight and accurate. Our model achieves a high accuracy with a Dice coefficient value of 0.813 with 3.55 M parameters and 7.51 G of FLOPs within 0.1 s (testing time in GPU), which is the best result compared with four other state-of-the-art models. MDPI 2022-08-05 /pmc/articles/PMC9371217/ /pubmed/35957432 http://dx.doi.org/10.3390/s22155875 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Yi Han, Guanghui Liu, Xiujian Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images |
title | Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images |
title_full | Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images |
title_fullStr | Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images |
title_full_unstemmed | Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images |
title_short | Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images |
title_sort | lightweight compound scaling network for nasopharyngeal carcinoma segmentation from mr images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371217/ https://www.ncbi.nlm.nih.gov/pubmed/35957432 http://dx.doi.org/10.3390/s22155875 |
work_keys_str_mv | AT liuyi lightweightcompoundscalingnetworkfornasopharyngealcarcinomasegmentationfrommrimages AT hanguanghui lightweightcompoundscalingnetworkfornasopharyngealcarcinomasegmentationfrommrimages AT liuxiujian lightweightcompoundscalingnetworkfornasopharyngealcarcinomasegmentationfrommrimages |