Cargando…
Lightweight Compound Scaling Network for Nasopharyngeal Carcinoma Segmentation from MR Images
Nasopharyngeal carcinoma (NPC) is a category of tumours with a high incidence in head-and-neck. To treat nasopharyngeal cancer, doctors invariably need to perform focal segmentation. However, manual segmentation is time consuming and laborious for doctors and the existing automatic segmentation meth...
Autores principales: | Liu, Yi, Han, Guanghui, Liu, Xiujian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371217/ https://www.ncbi.nlm.nih.gov/pubmed/35957432 http://dx.doi.org/10.3390/s22155875 |
Ejemplares similares
-
DCNet: Densely Connected Deep Convolutional Encoder–Decoder Network for Nasopharyngeal Carcinoma Segmentation
por: Li, Yang, et al.
Publicado: (2021) -
CAFS: An Attention-Based Co-Segmentation Semi-Supervised Method for Nasopharyngeal Carcinoma Segmentation
por: Chen, Yitong, et al.
Publicado: (2022) -
AttR2U-Net: A Fully Automated Model for MRI Nasopharyngeal Carcinoma Segmentation Based on Spatial Attention and Residual Recurrent Convolution
por: Zhang, Jiajing, et al.
Publicado: (2022) -
LCC-Net: A Lightweight Cross-Consistency Network for Semisupervised Cardiac MR Image Segmentation
por: Song, Lai, et al.
Publicado: (2021) -
A Collaborative Dictionary Learning Model for Nasopharyngeal Carcinoma Segmentation on Multimodalities MR Sequences
por: Wang, Haiyan, et al.
Publicado: (2020)