Cargando…
Bearing Fault Diagnosis Using Lightweight and Robust One-Dimensional Convolution Neural Network in the Frequency Domain
The massive environmental noise interference and insufficient effective sample degradation data of the intelligent fault diagnosis performance methods pose an extremely concerning issue. Realising the challenge of developing a facile and straightforward model that resolves these problems, this study...
Autores principales: | Hakim, Mohammed, Omran, Abdoulhadi A. Borhana, Inayat-Hussain, Jawaid I., Ahmed, Ali Najah, Abdellatef, Hamdan, Abdellatif, Abdallah, Gheni, Hassan Muwafaq |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371231/ https://www.ncbi.nlm.nih.gov/pubmed/35957359 http://dx.doi.org/10.3390/s22155793 |
Ejemplares similares
-
Lightweight Convolutional Neural Network and Its Application in Rolling Bearing Fault Diagnosis under Variable Working Conditions
por: Liu, Hengchang, et al.
Publicado: (2019) -
Application of Convolutional Neural Network in Motor Bearing Fault Diagnosis
por: Zhou, Shuiqin, et al.
Publicado: (2022) -
Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
por: Yan, Jing, et al.
Publicado: (2021) -
Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph
por: Li, Zhibo, et al.
Publicado: (2022) -
Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings
por: Xie, Shenglong, et al.
Publicado: (2020)