Cargando…
Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field
Wheat stripe rust (WSR) is a foliar disease that causes destructive damage in the wheat production context. Accurately estimating the severity of WSR in the autumn growing stage can help to objectively monitor the disease incidence level of WSR and predict the nationwide disease incidence in the fol...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371240/ https://www.ncbi.nlm.nih.gov/pubmed/35957233 http://dx.doi.org/10.3390/s22155676 |
_version_ | 1784767078826246144 |
---|---|
author | Deng, Jie Lv, Xuan Yang, Lujia Zhao, Baoqiang Zhou, Congying Yang, Ziqian Jiang, Jiarui Ning, Ning Zhang, Jinyu Shi, Junzheng Ma, Zhanhong |
author_facet | Deng, Jie Lv, Xuan Yang, Lujia Zhao, Baoqiang Zhou, Congying Yang, Ziqian Jiang, Jiarui Ning, Ning Zhang, Jinyu Shi, Junzheng Ma, Zhanhong |
author_sort | Deng, Jie |
collection | PubMed |
description | Wheat stripe rust (WSR) is a foliar disease that causes destructive damage in the wheat production context. Accurately estimating the severity of WSR in the autumn growing stage can help to objectively monitor the disease incidence level of WSR and predict the nationwide disease incidence in the following year, which have great significance for controlling its nationwide spread and ensuring the safety of grain production. In this study, to address the low accuracy and the efficiency of disease index estimation by traditional methods, WSR-diseased areas are segmented based on Segformer, and the macro disease index (MDI) is automatically calculated for the measurement of canopy-scale disease incidence. The results obtained with different semantic segmentation algorithms, loss functions, and data sets are compared for the segmentation effect, in order to address the severe class imbalance in disease region segmentation. We find that: (1) The results of the various models differed significantly, with Segformer being the best algorithm for WSR segmentation (rust class F1 score = 72.60%), based on the original data set; (2) the imbalanced nature of the data has a significant impact on the identification of the minority class (i.e., the rust class), for which solutions based on loss functions and re-weighting of the minority class are ineffective; (3) data augmentation of the minority class or under-sampling of the original data set to increase the proportion of the rust class greatly improved the F1-score of the model (rust class F1 score = 86.6%), revealing that re-sampling is a simple and effective approach to alleviating the class imbalance problem. Finally, the MDI was used to evaluate the models based on the different data sets, where the model based on the augmented data set presented the best performance (R(2) = 0.992, RMSE = 0.008). In conclusion, the deep-learning-based semantic segmentation method, and the corresponding optimization measures, applied in this study allow us to achieve pixel-level accurate segmentation of WSR regions on wheat leaves, thus enabling accurate assessment of the degree of WSR disease under complex backgrounds in the field, consequently providing technical support for field surveys and calculation of the disease level. |
format | Online Article Text |
id | pubmed-9371240 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93712402022-08-12 Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field Deng, Jie Lv, Xuan Yang, Lujia Zhao, Baoqiang Zhou, Congying Yang, Ziqian Jiang, Jiarui Ning, Ning Zhang, Jinyu Shi, Junzheng Ma, Zhanhong Sensors (Basel) Article Wheat stripe rust (WSR) is a foliar disease that causes destructive damage in the wheat production context. Accurately estimating the severity of WSR in the autumn growing stage can help to objectively monitor the disease incidence level of WSR and predict the nationwide disease incidence in the following year, which have great significance for controlling its nationwide spread and ensuring the safety of grain production. In this study, to address the low accuracy and the efficiency of disease index estimation by traditional methods, WSR-diseased areas are segmented based on Segformer, and the macro disease index (MDI) is automatically calculated for the measurement of canopy-scale disease incidence. The results obtained with different semantic segmentation algorithms, loss functions, and data sets are compared for the segmentation effect, in order to address the severe class imbalance in disease region segmentation. We find that: (1) The results of the various models differed significantly, with Segformer being the best algorithm for WSR segmentation (rust class F1 score = 72.60%), based on the original data set; (2) the imbalanced nature of the data has a significant impact on the identification of the minority class (i.e., the rust class), for which solutions based on loss functions and re-weighting of the minority class are ineffective; (3) data augmentation of the minority class or under-sampling of the original data set to increase the proportion of the rust class greatly improved the F1-score of the model (rust class F1 score = 86.6%), revealing that re-sampling is a simple and effective approach to alleviating the class imbalance problem. Finally, the MDI was used to evaluate the models based on the different data sets, where the model based on the augmented data set presented the best performance (R(2) = 0.992, RMSE = 0.008). In conclusion, the deep-learning-based semantic segmentation method, and the corresponding optimization measures, applied in this study allow us to achieve pixel-level accurate segmentation of WSR regions on wheat leaves, thus enabling accurate assessment of the degree of WSR disease under complex backgrounds in the field, consequently providing technical support for field surveys and calculation of the disease level. MDPI 2022-07-29 /pmc/articles/PMC9371240/ /pubmed/35957233 http://dx.doi.org/10.3390/s22155676 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Deng, Jie Lv, Xuan Yang, Lujia Zhao, Baoqiang Zhou, Congying Yang, Ziqian Jiang, Jiarui Ning, Ning Zhang, Jinyu Shi, Junzheng Ma, Zhanhong Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field |
title | Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field |
title_full | Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field |
title_fullStr | Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field |
title_full_unstemmed | Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field |
title_short | Assessing Macro Disease Index of Wheat Stripe Rust Based on Segformer with Complex Background in the Field |
title_sort | assessing macro disease index of wheat stripe rust based on segformer with complex background in the field |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371240/ https://www.ncbi.nlm.nih.gov/pubmed/35957233 http://dx.doi.org/10.3390/s22155676 |
work_keys_str_mv | AT dengjie assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield AT lvxuan assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield AT yanglujia assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield AT zhaobaoqiang assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield AT zhoucongying assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield AT yangziqian assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield AT jiangjiarui assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield AT ningning assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield AT zhangjinyu assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield AT shijunzheng assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield AT mazhanhong assessingmacrodiseaseindexofwheatstriperustbasedonsegformerwithcomplexbackgroundinthefield |