Cargando…
SASMOTE: A Self-Attention Oversampling Method for Imbalanced CSI Fingerprints in Indoor Positioning Systems
WiFi localization based on channel state information (CSI) fingerprints has become the mainstream method for indoor positioning due to the widespread deployment of WiFi networks, in which fingerprint database building is critical. However, issues, such as insufficient samples or missing data in the...
Autores principales: | Liu, Ankang, Cheng, Lingfei, Yu, Changdong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371244/ https://www.ncbi.nlm.nih.gov/pubmed/35957237 http://dx.doi.org/10.3390/s22155677 |
Ejemplares similares
-
A self-inspected adaptive SMOTE algorithm (SASMOTE) for highly imbalanced data classification in healthcare
por: Kosolwattana, Tanapol, et al.
Publicado: (2023) -
Selective oversampling approach for strongly imbalanced data
por: Gnip, Peter, et al.
Publicado: (2021) -
An oversampling method for multi-class imbalanced data based on composite weights
por: Deng, Mingyang, et al.
Publicado: (2021) -
Imbalanced classification for protein subcellular localization with multilabel oversampling
por: Rana, Priyanka, et al.
Publicado: (2022) -
CSI Amplitude Fingerprinting for Indoor Localization with Dictionary Learning
por: Liu, Wen, et al.
Publicado: (2021)