Cargando…
Influence of Printing Parameters on Self-Cleaning Properties of 3D Printed Polymeric Fabrics
The processes for making self-cleaning textile fabrics have been extensively discussed in the literature. However, the exploration of the potential for self-cleaning by controlling the fabrication parameters of the fabric at the microscopic level has not been addressed. The current evolution in 3D p...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371245/ https://www.ncbi.nlm.nih.gov/pubmed/35956643 http://dx.doi.org/10.3390/polym14153128 |
_version_ | 1784767080291106816 |
---|---|
author | Atwah, Ayat Adnan Almutairi, Mohammed Dukhi He, Feiyang Khan, Muhammad A. |
author_facet | Atwah, Ayat Adnan Almutairi, Mohammed Dukhi He, Feiyang Khan, Muhammad A. |
author_sort | Atwah, Ayat Adnan |
collection | PubMed |
description | The processes for making self-cleaning textile fabrics have been extensively discussed in the literature. However, the exploration of the potential for self-cleaning by controlling the fabrication parameters of the fabric at the microscopic level has not been addressed. The current evolution in 3D printing technology provides an opportunity to control parameters during fabric manufacturing and generate self-cleaning features at the woven structural level. Fabrication of 3D printed textile fabrics using the low-cost fused filament fabrication (FFF) technique has been achieved. Printing parameters such as orientation angle, layer height, and extruder width were used to control self-cleaning microscopic features in the printed fabrics. Self-cleaning features such as surface roughness, wettability contact angle, and porosity were analyzed for different values of printing parameters. The combination of three printing parameters was adjusted to provide the best self-cleaning textile fabric surface: layer height (LH) (0.15, 0.13, 0.10 mm) and extruder width (EW) (0.5, 0.4, 0.3 mm) along with two different angular printing orientations (O) (45° and 90°). Three different thermoplastic flexible filaments printing materials were used: thermoplastic polyurethane (TPU 98A), thermoplastic elastomers (TPE felaflex), and thermoplastic co-polyester (TPC flex45). Self-cleaning properties were quantified using a pre-set defined criterion. The optimization of printing parameters was modeled to achieve the best self-cleaning features for the printed specimens. |
format | Online Article Text |
id | pubmed-9371245 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93712452022-08-12 Influence of Printing Parameters on Self-Cleaning Properties of 3D Printed Polymeric Fabrics Atwah, Ayat Adnan Almutairi, Mohammed Dukhi He, Feiyang Khan, Muhammad A. Polymers (Basel) Article The processes for making self-cleaning textile fabrics have been extensively discussed in the literature. However, the exploration of the potential for self-cleaning by controlling the fabrication parameters of the fabric at the microscopic level has not been addressed. The current evolution in 3D printing technology provides an opportunity to control parameters during fabric manufacturing and generate self-cleaning features at the woven structural level. Fabrication of 3D printed textile fabrics using the low-cost fused filament fabrication (FFF) technique has been achieved. Printing parameters such as orientation angle, layer height, and extruder width were used to control self-cleaning microscopic features in the printed fabrics. Self-cleaning features such as surface roughness, wettability contact angle, and porosity were analyzed for different values of printing parameters. The combination of three printing parameters was adjusted to provide the best self-cleaning textile fabric surface: layer height (LH) (0.15, 0.13, 0.10 mm) and extruder width (EW) (0.5, 0.4, 0.3 mm) along with two different angular printing orientations (O) (45° and 90°). Three different thermoplastic flexible filaments printing materials were used: thermoplastic polyurethane (TPU 98A), thermoplastic elastomers (TPE felaflex), and thermoplastic co-polyester (TPC flex45). Self-cleaning properties were quantified using a pre-set defined criterion. The optimization of printing parameters was modeled to achieve the best self-cleaning features for the printed specimens. MDPI 2022-07-31 /pmc/articles/PMC9371245/ /pubmed/35956643 http://dx.doi.org/10.3390/polym14153128 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Atwah, Ayat Adnan Almutairi, Mohammed Dukhi He, Feiyang Khan, Muhammad A. Influence of Printing Parameters on Self-Cleaning Properties of 3D Printed Polymeric Fabrics |
title | Influence of Printing Parameters on Self-Cleaning Properties of 3D Printed Polymeric Fabrics |
title_full | Influence of Printing Parameters on Self-Cleaning Properties of 3D Printed Polymeric Fabrics |
title_fullStr | Influence of Printing Parameters on Self-Cleaning Properties of 3D Printed Polymeric Fabrics |
title_full_unstemmed | Influence of Printing Parameters on Self-Cleaning Properties of 3D Printed Polymeric Fabrics |
title_short | Influence of Printing Parameters on Self-Cleaning Properties of 3D Printed Polymeric Fabrics |
title_sort | influence of printing parameters on self-cleaning properties of 3d printed polymeric fabrics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371245/ https://www.ncbi.nlm.nih.gov/pubmed/35956643 http://dx.doi.org/10.3390/polym14153128 |
work_keys_str_mv | AT atwahayatadnan influenceofprintingparametersonselfcleaningpropertiesof3dprintedpolymericfabrics AT almutairimohammeddukhi influenceofprintingparametersonselfcleaningpropertiesof3dprintedpolymericfabrics AT hefeiyang influenceofprintingparametersonselfcleaningpropertiesof3dprintedpolymericfabrics AT khanmuhammada influenceofprintingparametersonselfcleaningpropertiesof3dprintedpolymericfabrics |