Cargando…
Machine learning-based predictive modeling of resilience to stressors in pregnant women during COVID-19: A prospective cohort study
During the COVID-19 pandemic, pregnant women have been at high risk for psychological distress. Lifestyle factors may be modifiable elements to help reduce and promote resilience to prenatal stress. We used Machine-Learning (ML) algorithms applied to questionnaire data obtained from an international...
Autores principales: | Nichols, Emily S., Pathak, Harini S., Bgeginski, Roberta, Mottola, Michelle F., Giroux, Isabelle, Van Lieshout, Ryan J., Mohsenzadeh, Yalda, Duerden, Emma G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371264/ https://www.ncbi.nlm.nih.gov/pubmed/35951588 http://dx.doi.org/10.1371/journal.pone.0272862 |
Ejemplares similares
-
Prenatal and postpartum maternal mental health and neonatal motor outcomes during the COVID-19 pandemic
por: Papadopoulos, Alissa, et al.
Publicado: (2022) -
Translation and Cultural Adaptation of the Short-Form Food Frequency Questionnaire for Pregnancy into Brazilian Portuguese
por: Kasawara, Karina Tamy, et al.
Publicado: (2018) -
Local Stressors Reduce Coral Resilience to Bleaching
por: Carilli, Jessica E., et al.
Publicado: (2009) -
Resilience: Safety in the Aftermath of Traumatic Stressor Experiences
por: Matheson, Kimberly, et al.
Publicado: (2020) -
Management of Local Stressors Can Improve the Resilience of Marine Canopy Algae to Global Stressors
por: Strain, Elisabeth M. A., et al.
Publicado: (2015)