Cargando…

Multi-mode movement decisions across widely ranging behavioral processes

Movement of organisms plays a fundamental role in the evolution and diversity of life. Animals typically move at an irregular pace over time and space, alternating among movement states. Understanding movement decisions and developing mechanistic models of animal distribution dynamics can thus be co...

Descripción completa

Detalles Bibliográficos
Autores principales: Prima, Marie-Caroline, Duchesne, Thierry, Merkle, Jerod A., Chamaillé-Jammes, Simon, Fortin, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371300/
https://www.ncbi.nlm.nih.gov/pubmed/35951664
http://dx.doi.org/10.1371/journal.pone.0272538
_version_ 1784767098595049472
author Prima, Marie-Caroline
Duchesne, Thierry
Merkle, Jerod A.
Chamaillé-Jammes, Simon
Fortin, Daniel
author_facet Prima, Marie-Caroline
Duchesne, Thierry
Merkle, Jerod A.
Chamaillé-Jammes, Simon
Fortin, Daniel
author_sort Prima, Marie-Caroline
collection PubMed
description Movement of organisms plays a fundamental role in the evolution and diversity of life. Animals typically move at an irregular pace over time and space, alternating among movement states. Understanding movement decisions and developing mechanistic models of animal distribution dynamics can thus be contingent to adequate discrimination of behavioral phases. Existing methods to disentangle movement states typically require a follow-up analysis to identify state-dependent drivers of animal movement, which overlooks statistical uncertainty that comes with the state delineation process. Here, we developed population-level, multi-state step selection functions (HMM-SSF) that can identify simultaneously the different behavioral bouts and the specific underlying behavior-habitat relationship. Using simulated data and relocation data from mule deer (Odocoileus hemionus), plains bison (Bison bison bison) and plains zebra (Equus quagga), we illustrated the HMM-SSF robustness, versatility, and predictive ability for animals involved in distinct behavioral processes: foraging, migrating and avoiding a nearby predator. Individuals displayed different habitat selection pattern during the encamped and the travelling phase. Some landscape attributes switched from being selected to avoided, depending on the movement phase. We further showed that HMM-SSF can detect multi-modes of movement triggered by predators, with prey switching to the travelling phase when predators are in close vicinity. HMM-SSFs thus can be used to gain a mechanistic understanding of how animals use their environment in relation to the complex interplay between their needs to move, their knowledge of the environment and navigation capacity, their motion capacity and the external factors related to landscape heterogeneity.
format Online
Article
Text
id pubmed-9371300
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-93713002022-08-12 Multi-mode movement decisions across widely ranging behavioral processes Prima, Marie-Caroline Duchesne, Thierry Merkle, Jerod A. Chamaillé-Jammes, Simon Fortin, Daniel PLoS One Research Article Movement of organisms plays a fundamental role in the evolution and diversity of life. Animals typically move at an irregular pace over time and space, alternating among movement states. Understanding movement decisions and developing mechanistic models of animal distribution dynamics can thus be contingent to adequate discrimination of behavioral phases. Existing methods to disentangle movement states typically require a follow-up analysis to identify state-dependent drivers of animal movement, which overlooks statistical uncertainty that comes with the state delineation process. Here, we developed population-level, multi-state step selection functions (HMM-SSF) that can identify simultaneously the different behavioral bouts and the specific underlying behavior-habitat relationship. Using simulated data and relocation data from mule deer (Odocoileus hemionus), plains bison (Bison bison bison) and plains zebra (Equus quagga), we illustrated the HMM-SSF robustness, versatility, and predictive ability for animals involved in distinct behavioral processes: foraging, migrating and avoiding a nearby predator. Individuals displayed different habitat selection pattern during the encamped and the travelling phase. Some landscape attributes switched from being selected to avoided, depending on the movement phase. We further showed that HMM-SSF can detect multi-modes of movement triggered by predators, with prey switching to the travelling phase when predators are in close vicinity. HMM-SSFs thus can be used to gain a mechanistic understanding of how animals use their environment in relation to the complex interplay between their needs to move, their knowledge of the environment and navigation capacity, their motion capacity and the external factors related to landscape heterogeneity. Public Library of Science 2022-08-11 /pmc/articles/PMC9371300/ /pubmed/35951664 http://dx.doi.org/10.1371/journal.pone.0272538 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication.
spellingShingle Research Article
Prima, Marie-Caroline
Duchesne, Thierry
Merkle, Jerod A.
Chamaillé-Jammes, Simon
Fortin, Daniel
Multi-mode movement decisions across widely ranging behavioral processes
title Multi-mode movement decisions across widely ranging behavioral processes
title_full Multi-mode movement decisions across widely ranging behavioral processes
title_fullStr Multi-mode movement decisions across widely ranging behavioral processes
title_full_unstemmed Multi-mode movement decisions across widely ranging behavioral processes
title_short Multi-mode movement decisions across widely ranging behavioral processes
title_sort multi-mode movement decisions across widely ranging behavioral processes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371300/
https://www.ncbi.nlm.nih.gov/pubmed/35951664
http://dx.doi.org/10.1371/journal.pone.0272538
work_keys_str_mv AT primamariecaroline multimodemovementdecisionsacrosswidelyrangingbehavioralprocesses
AT duchesnethierry multimodemovementdecisionsacrosswidelyrangingbehavioralprocesses
AT merklejeroda multimodemovementdecisionsacrosswidelyrangingbehavioralprocesses
AT chamaillejammessimon multimodemovementdecisionsacrosswidelyrangingbehavioralprocesses
AT fortindaniel multimodemovementdecisionsacrosswidelyrangingbehavioralprocesses