Cargando…
A deep tensor-based approach for automatic depression recognition from speech utterances
Depression is one of the significant mental health issues affecting all age groups globally. While it has been widely recognized to be one of the major disease burdens in populations, complexities in definitive diagnosis present a major challenge. Usually, trained psychologists utilize conventional...
Autores principales: | Pandey, Sandeep Kumar, Shekhawat, Hanumant Singh, Prasanna, S. R. M., Bhasin, Shalendar, Jasuja, Ravi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371305/ https://www.ncbi.nlm.nih.gov/pubmed/35951508 http://dx.doi.org/10.1371/journal.pone.0272659 |
Ejemplares similares
-
Utterance Level Feature Aggregation with Deep Metric Learning for Speech Emotion Recognition
por: Mocanu, Bogdan, et al.
Publicado: (2021) -
Conversation Electrified: ERP Correlates of Speech Act Recognition in Underspecified Utterances
por: Gisladottir, Rosa S., et al.
Publicado: (2015) -
Integrating Voice Quality Cues in the Pitch Perception of Speech and Non-speech Utterances
por: Kuang, Jianjing, et al.
Publicado: (2018) -
Automatic speech recognition: a deep learning approach
por: Yu, Dong, et al.
Publicado: (2015) -
Visual Grouping in Accordance With Utterance Planning Facilitates Speech Production
por: Zhao, Liming, et al.
Publicado: (2018)