Cargando…
Maternal proximity to mountain-top removal mining and birth defects in Appalachian Kentucky, 1997–2003
Extraction of coal through mountaintop removal mining (MTR) alters many dimensions of the landscape. Explosive blasts, exposed rock, and coal washing have the potential to pollute air and water. Previous research suggests that infants born to mothers living in areas with MTR have a higher prevalence...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371306/ https://www.ncbi.nlm.nih.gov/pubmed/35951600 http://dx.doi.org/10.1371/journal.pone.0272998 |
Sumario: | Extraction of coal through mountaintop removal mining (MTR) alters many dimensions of the landscape. Explosive blasts, exposed rock, and coal washing have the potential to pollute air and water. Previous research suggests that infants born to mothers living in areas with MTR have a higher prevalence of birth defects. In this cross-sectional study, we further examine the relationship between MTR activity and several types of birth defects. Maternal exposure to MTR was assessed using remote sensing data from Skytruth, which captures MTR activity in the Central Appalachian region of the United States. Active MTR area was quantified within a five-kilometer buffer surrounding geocoded maternal address captured on birth records for live births to Appalachian Kentucky mothers between 1997 and 2003 (N = 95,581). We assigned high, medium, and low exposure based on the tertile of total MTR area within 5-km, and births with no MTR within this buffer were assigned zero exposure. The presence or absence of a birth defect grouped into six major organ systems was identified using birth records alone. Finally, we applied conditional multiple imputation for variables with missing values before conducting separate multivariable log-binomial regression models for each birth defect group. Prevalence ratio (PR) estimates were adjusted for individual level covariates from birth records. The prevalence of gastro-intestinal defects was significantly higher in birth records with high and low active MTR exposure compared to records with no exposure. (High exposure: PR = 1.99, 95% CI = 1.14–3.47; low exposure PR = 1.88, 95% CI = 1.06–3.31). This study supports some of the existing findings of previous ecological studies. Research addressing the relationship between gastro-intestinal birth defects and MTR coal mining is warranted but should carefully consider temporal dimensions of exposure. |
---|