Cargando…
Semantic textual similarity for modern standard and dialectal Arabic using transfer learning
Semantic Textual Similarity (STS) is the task of identifying the semantic correlation between two sentences of the same or different languages. STS is an important task in natural language processing because it has many applications in different domains such as information retrieval, machine transla...
Autores principales: | Al Sulaiman, Mansour, Moussa, Abdullah M., Abdou, Sherif, Elgibreen, Hebah, Faisal, Mohammed, Rashwan, Mohsen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371328/ https://www.ncbi.nlm.nih.gov/pubmed/35951673 http://dx.doi.org/10.1371/journal.pone.0272991 |
Ejemplares similares
-
Semantic Textual Similarity in Japanese Clinical Domain Texts Using BERT
por: Mutinda, Faith Wavinya, et al.
Publicado: (2021) -
Morphological structure in the Arabic mental lexicon: Parallels between standard and dialectal Arabic
por: Boudelaa, Sami, et al.
Publicado: (2012) -
Measurement of Semantic Textual Similarity in Clinical Texts: Comparison of Transformer-Based Models
por: Yang, Xi, et al.
Publicado: (2020) -
An Ensemble Semantic Textual Similarity Measure Based on Multiple Evidences for Biomedical Documents
por: Li, Meijing, et al.
Publicado: (2022) -
A Quantum Genetic Algorithm for Building a Semantic Textual Similarity Estimation Framework for Plagiarism Detection Applications
por: Darwish, Saad M., et al.
Publicado: (2023)