Cargando…
Boosting k-means clustering with symbiotic organisms search for automatic clustering problems
Kmeans clustering algorithm is an iterative unsupervised learning algorithm that tries to partition the given dataset into k pre-defined distinct non-overlapping clusters where each data point belongs to only one group. However, its performance is affected by its sensitivity to the initial cluster c...
Autores principales: | Ikotun, Abiodun M., Ezugwu, Absalom E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371361/ https://www.ncbi.nlm.nih.gov/pubmed/35951672 http://dx.doi.org/10.1371/journal.pone.0272861 |
Ejemplares similares
-
Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times
por: Ezugwu, Absalom E., et al.
Publicado: (2018) -
A bio-inspired convolution neural network architecture for automatic breast cancer detection and classification using RNA-Seq gene expression data
por: Mohamed, Tehnan I. A., et al.
Publicado: (2023) -
Clustering Using Boosted Constrained k-Means Algorithm
por: Okabe, Masayuki, et al.
Publicado: (2018) -
Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review
por: Ezugwu, Absalom E., et al.
Publicado: (2023) -
Automatic detection and classification of lung cancer CT scans based on deep learning and ebola optimization search algorithm
por: Mohamed, Tehnan I. A., et al.
Publicado: (2023)