Cargando…
Risky-Driving-Image Recognition Based on Visual Attention Mechanism and Deep Learning
Risky driving behavior seriously affects the driver’s ability to react, execute and judge, which is one of the major causes of traffic accidents. The timely and accurate identification of the driving status of drivers is particularly important, since drivers can quickly adjust their driving status t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371390/ https://www.ncbi.nlm.nih.gov/pubmed/35957424 http://dx.doi.org/10.3390/s22155868 |
_version_ | 1784767126212444160 |
---|---|
author | Song, Wei Zhang, Guangde |
author_facet | Song, Wei Zhang, Guangde |
author_sort | Song, Wei |
collection | PubMed |
description | Risky driving behavior seriously affects the driver’s ability to react, execute and judge, which is one of the major causes of traffic accidents. The timely and accurate identification of the driving status of drivers is particularly important, since drivers can quickly adjust their driving status to avoid safety accidents. In order to further improve the identification accuracy, this paper proposes a risky-driving image-recognition system based on the visual attention mechanism and deep-learning technology to identify four types of driving status images including normal driving, driving while smoking, driving while drinking and driving while talking. With reference to ResNet, we build four deep-learning models with different depths and embed the proposed visual attention blocks into the image-classification model. The experimental results indicate that the classification accuracy of the ResNet models with lower depth can exceed the ResNet models with higher depth by embedding the visual attention modules, while there is no significant change in model complexity, which could improve the model recognition accuracy without reducing the recognition efficiency. |
format | Online Article Text |
id | pubmed-9371390 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93713902022-08-12 Risky-Driving-Image Recognition Based on Visual Attention Mechanism and Deep Learning Song, Wei Zhang, Guangde Sensors (Basel) Article Risky driving behavior seriously affects the driver’s ability to react, execute and judge, which is one of the major causes of traffic accidents. The timely and accurate identification of the driving status of drivers is particularly important, since drivers can quickly adjust their driving status to avoid safety accidents. In order to further improve the identification accuracy, this paper proposes a risky-driving image-recognition system based on the visual attention mechanism and deep-learning technology to identify four types of driving status images including normal driving, driving while smoking, driving while drinking and driving while talking. With reference to ResNet, we build four deep-learning models with different depths and embed the proposed visual attention blocks into the image-classification model. The experimental results indicate that the classification accuracy of the ResNet models with lower depth can exceed the ResNet models with higher depth by embedding the visual attention modules, while there is no significant change in model complexity, which could improve the model recognition accuracy without reducing the recognition efficiency. MDPI 2022-08-05 /pmc/articles/PMC9371390/ /pubmed/35957424 http://dx.doi.org/10.3390/s22155868 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Wei Zhang, Guangde Risky-Driving-Image Recognition Based on Visual Attention Mechanism and Deep Learning |
title | Risky-Driving-Image Recognition Based on Visual Attention Mechanism and Deep Learning |
title_full | Risky-Driving-Image Recognition Based on Visual Attention Mechanism and Deep Learning |
title_fullStr | Risky-Driving-Image Recognition Based on Visual Attention Mechanism and Deep Learning |
title_full_unstemmed | Risky-Driving-Image Recognition Based on Visual Attention Mechanism and Deep Learning |
title_short | Risky-Driving-Image Recognition Based on Visual Attention Mechanism and Deep Learning |
title_sort | risky-driving-image recognition based on visual attention mechanism and deep learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371390/ https://www.ncbi.nlm.nih.gov/pubmed/35957424 http://dx.doi.org/10.3390/s22155868 |
work_keys_str_mv | AT songwei riskydrivingimagerecognitionbasedonvisualattentionmechanismanddeeplearning AT zhangguangde riskydrivingimagerecognitionbasedonvisualattentionmechanismanddeeplearning |