Cargando…
Sintering Quality Prediction Model Based on Semi-Supervised Dynamic Time Feature Extraction Framework
In the sintering process, it is difficult to obtain the key quality variables in real time, so there is lack of real-time information to guide the production process. Furthermore, these labeled data are too few, resulting in poor performance of conventional soft sensor models. Therefore, a novel sem...
Autores principales: | Li, Yuxuan, Yang, Chunjie, Sun, Youxian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9371414/ https://www.ncbi.nlm.nih.gov/pubmed/35957415 http://dx.doi.org/10.3390/s22155861 |
Ejemplares similares
-
A Soft Sensor Model of Sintering Process Quality Index Based on Multi-Source Data Fusion
por: Li, Yuxuan, et al.
Publicado: (2023) -
Instance segmentation using semi-supervised learning for fire recognition
por: Sun, Guangmin, et al.
Publicado: (2022) -
Semi-Supervised Fuzzy Clustering with Feature Discrimination
por: Li, Longlong, et al.
Publicado: (2015) -
Simple strategies for semi-supervised feature selection
por: Sechidis, Konstantinos, et al.
Publicado: (2017) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020)